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A High-Performance, Low-Cost

Multiprocessor Bus for Workstations and

Midrange Servers

The Runway bus, a synchronous, 64-bit, split-transaction, time
multiplexed address and data bus, is a new processor-memory-I/O
interconnect optimized for one-way to four-way symmetric
multiprocessing systems. It is capable of sustained memory
bandwidths of up to 768 megabytes per second in a four-way
system.

by William R. Bryg, Kenneth K. Chan, and Nicholas S. Fiduccia

The HP 9000 K-class servers and J-class workstations are the first systems to introduce a low-cost, high-performance bus
structure named the Runway bus. The Runway bus is a new processor-memory-I/O interconnect that is ideally suited for
one-way to four-way symmetric multiprocessing for high-end workstations and midrange servers. It is a synchronous, 64-bit,
split-transaction, time multiplexed address and data bus. The HP PA 7200 processor and the Runway bus have been
designed for a bus frequency of 120 MHz in a four-way multiprocessor system, enabling sustained memory bandwidths of up
to 768 Mbytes per second without external interface or “glue” logic.

The goals for the design of the Runway protocol were to provide a price/performance-competitive bus for one-way to
four-way multiprocessing, to minimize interface complexity, and to support the PA 7200 and future processors. The Runway
bus achieves these goals by maximizing bus frequency, pipelining multiple operations as much as possible, and using
available bandwidth very efficiently, while keeping complexity and pin count low enough so that the bus interface can be
integrated directly on the processors, memory controllers, and I/O adapters that connect to the bus.

Overview
The Runway bus features multiple outstanding split transactions from each bus module, predictive flow control, an efficient
distributed pipelined arbitration scheme, and a snoopy coherency protocol,1 which allows flexible coherency check
response time.

The design center application for the Runway protocol is the HP 9000 K-class midrange server. Fig. 1 shows a Runway bus
block diagram of the HP 9000 K-class server. The Runway bus connects one to four PA 7200 processors with a dual I/O
adapter and a memory controller through a shared address and data bus. The dual I/O adapter is logically two separate
Runway modules packaged on a single chip. Each I/O adapter interfaces to the HP HSC I/O bus. The memory controller acts
as Runway host, taking a central role in arbitration, flow control, and coherency through use of a special client-OP bus.

The shared bus portion of the Runway bus includes a 64-bit address and data bus, master IDs and transaction IDs to tag all
transactions uniquely, address valid and data valid signals to specify the cycle type, and parity protection for data and
control. The memory controller specifies what types of transactions can be started by driving the special client-OP bus,
which is used for flow control and memory arbitration. Distributed arbitration is implemented with unidirectional wires
from each module to other modules. Coherency is maintained by having all modules report coherency on dedicated
unidirectional wires to the memory controller, which calculates the coherency response and sends it with the data.

Each transaction has a single-cycle header of 64 bits, which minimally contains the transaction type (TTYPE) and the
physical address. Each transaction is identified or tagged with the issuing module’s master ID and a transaction ID, the
combination of which is unique for the duration of the transaction. The master ID and transaction ID are transmitted in
parallel to the main address and data bus, so no extra cycles are necessary for the transmission of the master ID and
transaction ID.

The Runway bus is a split-transaction bus. A read transaction is initiated by transmitting the encoded header, which
includes the address, along with the issuer’s master ID and a unique transaction ID, to all other modules. The issuing module
then relinquishes control of the bus, allowing other modules to issue their transactions. When the data is available, the
module supplying the data, typically memory, arbitrates for the bus, then transmits the data along with the master ID and
transaction ID so that the the original issuer can match the data with the particular request.

Write transactions are not split, since the issuer has the data that it wants to send. The single-cycle transaction header is
followed immediately by the data being written, using the issuer’s master ID and a unique transaction ID.
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Fig. 1. HP 9000 K-class server Runway bus block diagram.

COH = Coherency Signal Lines

Fig. 2 shows a processor issuing a read transaction followed immediately by a write transaction. Each transaction is tagged
with the issuing module’s master ID as well as a transaction ID. This combination allows the data response, tagged with the
same information, to be directed back to the issuing module without the need for an additional address cycle. Runway
protocol allows each module to have up to 64 transactions in progress at one time.

Arbitration
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Fig. 2. A processor issuing a read transaction followed immediately by a write transaction on the Runway bus.

Arbitration
To minimize arbitration latency without decreasing maximum bus frequency, the Runway bus has a pipelined, two-state
arbitration scheme in which the determination of the arbitration winner is distributed among all modules on the bus. Each
module drives a unique arbitration request signal and receives other modules’ arbitration signals. On the first arbitration
cycle, all interested parties assert their arbitration signals, and the memory controller drives the client-OP control signals
(see Table I) indicating flow control information or whether all modules are going to be preempted by a memory data
return. During the second cycle, all modules evaluate the information received and make the unanimous decision about who
has gained ownership of the bus. On the third Runway cycle, the module that won arbitration drives the bus.

With distributed arbitration instead of centralized arbitration, arbitration information only needs to flow once between bus
requesters. Using a centralized arbitration unit would require information to flow twice, first between the requester and the
arbiter and then between the arbiter and the winner, adding extra latency to the arbitration.
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Distributed arbitration on the Runway bus allows latency between arbitration and bus access to be as short as two cycles.
Once a module wins arbitration, it may optionally assert a special long transaction signal to extend bus ownership for a
limited number of cycles for certain transactions. To maximize bus utilization, arbitration is pipelined: while arbitration can
be asserted on any cycle, it is effective for the selection of the next bus owner two cycles before the current bus owner
releases the bus.

Table I
Client-OP Bus Signals

ANY_TRANS Any transaction allowed

NO_IO Any transaction allowed except CPU to I/O

RETURNS_ONLY Return or response transactions allowed

ONE_CYCLE Only one-cycle transactions allowed

NONE_ALLOWED No transactions allowed

MEM_CONTROL Memory module controls bus

SHARED_RETURN Shared data return

ATOMIC Atomic owner can issue any transaction; other
modules can only issue response transactions.

Arbitration priority is designed to maintain fairness while delivering optimal performance. The highest arbitration priority is
always given to the current bus owner through use of the long transaction signal, so that the current owner can finish
whatever transaction it started. The second highest priority is given to the memory controller for sending out data returns,
using the client-OP bus to take control of the Runway bus. Since the data return is the completion of a previous split read
request, it is likely that the requester is stalled waiting for the data, and the data return will allow the requester to continue
processing. The third highest arbitration priority goes to the I/O adapter, which requests the bus relatively infrequently, but
needs low latency when it does. Lowest arbitration priority is the processors, which use a round-robin algorithm to take
turns using the bus.

The arbitration protocol is implemented in such a way that higher-priority modules do not have to look at the arbitration
request signals of lower-priority modules, thus saving pins and reducing costs. A side effect is that low-priority modules can
arbitrate for the bus faster than high-priority modules when the bus is idle. This helps processors, which are the main
consumers of the bus, and doesn’t bother the memory controller since it can predict when it will need the bus for a data
return and can start arbitrating sufficiently early to account for the longer delay in arbitration.

Predictive Flow Control
To make the best use of the available bandwidth and greatly reduce complexity, transactions on the Runway bus are never
aborted or retried. Instead, the client-OP bus is used to communicate what transactions can safely be initiated, as shown in
Table I.

Since the Runway bus is heavily pipelined, there are queues in the processors, memory controllers, and I/O adapters to hold
transactions until they can be processed. The client-OP bus is used to communicate whether there is sufficient room in
these queues to receive a particular kind of transaction. Through various means, the memory controller keeps track of how
much room is remaining in these queues and restricts new transactions when a particular queue is critically full, meaning
that the queue would overflow if all transactions being started in the pipeline plus one more all needed to go into that queue.
Since the memory controller “predicts” when a queue needs to stop accepting new transactions to avoid overflow, this is
called predictive flow control.

Predictive flow control increases the cost of queue space by having some queue entries that are almost never used, but the
effective cost of queue space is going down with greater integration. The primary benefit of predictive flow control is greatly
reduced complexity, since modules no longer have to design in the capability of retrying a transaction that got aborted. This
also improves bandwidth since each transaction is issued on the bus exactly once.

A secondary benefit of predictive flow control is faster completion of transactions that must be issued and received in order,
particularly writes to I/O devices. If a transaction is allowed to be aborted, a second serially dependent transaction cannot
be issued until the first transaction is guaranteed not to be aborted. Normally, this is after the receiving module has had
enough time to look at the transaction and check the state of its queues for room, which is at least several cycles into the
transaction. With predictive flow control, the issuing module knows when it wins arbitration that the first transaction will
issue successfully, and the module can immediately start arbitrating for the second transaction.
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Coherency
The Runway bus provides cache and TLB (translation lookaside buffer) coherence with a snoopy protocol. The protocol
maintains cache coherency among processors and I/O modules with a minimum amount of bus traffic while also minimizing
the processor complexity required to support snoopy multiprocessing, sometimes at the expense of memory controller
complexity.

The Runway bus supports processors with four-state caches: a line may be invalid, shared, private-clean, or private-dirty. An
invalid line is one that is not present in cache. A line is shared if it is present in two or more caches. A private line can only
be present in one cache; it is private-dirty if it has been modified, private-clean otherwise.

Whenever a coherent transaction is issued on the bus, each processor or I/O device (acting as a third party) performs a
snoop, or coherency check, using the virtual index and physical address. Each module then sends its coherency check
status directly to the memory controller on dedicated COH signal lines. Coherency status may be COH_OK, which means that
either the line is absent or the line has been invalidated. A coherency status of COH_SHR means that the line is either already
shared or has changed to shared after the coherency check. A third possibility is COH_CPY, which means the third party has
a modified copy of the line and will send the line directly to the requester. Fig. 3 shows a coherent read transaction that hits
a dirty line in a third party’s cache.

Arbitration
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OK
CPY

CCC
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=  Cache Coherency Check
=  Cache-to-Cache Transfer

Fig. 3. A coherent read transaction hits a dirty line in a third party’s cache.

After the memory controller has received coherency status from every module, it will return memory data to the requester if
the coherency status reports consist of only COH_OK or COH_SHR. If any module signaled COH_SHR, the memory controller
will inform the requester to mark the line shared on the client-OP lines during the data return. If any module signals
COH_CPY, however, the memory controller will discard the memory data and wait for the third party to send the modified
cache line directly to the requester in a C2C_WRITE transaction. The memory controller will also write the modified data in
memory so that the requester can mark the line clean instead of dirty, freeing the requester (and the bus) from a subsequent
write transaction if the line has to be cast out. Fig. 4 shows cache state transitions resulting from CPU instructions. Fig. 5
shows transitions resulting from bus snoops.
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Fig. 4. Cache state transitions resulting from CPU instructions. The lines with arrows show the transitions of

cache state at the originating CPU. The text near each line describes the conditions at other CPUs that caused the

transition, as well as the effect on the other CPU’s state. For example, from the invalid state, a load miss will al-

ways cause a Read_Shared_or_Private transaction. The final state for the load miss will be either private-clean (if

another CPU had the cache line invalid or private-dirty) or shared (if another CPU had the cache line shared or

private-clean).
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The Runway coherency protocol supports multiple outstanding coherency checks and allows each module to signal
coherency status at its own rate rather than at a fixed latency. Each module maintains a queue of coherent transactions
received from the bus to be processed in FIFO order at a time convenient for the module. As long as the coherency response
is signaled before data is available from the memory controller, delaying the coherency check will not increase memory
latency. This flexibility allows CPUs to implement simple algorithms to schedule their coherency checks so as to minimize
conflicts with the instruction pipeline for cache access.

Private-Clean

Private-Dirty

Shared

Invalid

Read_Shared_or_Private

Read_Private COH_CPY

COH_CPY

Read_Private COH_OK

Read_Private COH_OK

Read_Shared_or_Private

Read_Private COH_OK

COH_OK

Transaction: Bus Signal:

Read_Shared
_or_Private
  COH_SHR

Read_Shared
_or_Private
  COH_SHR

Fig. 5. Cache state transitions resulting from bus coherency checks (snoops).

Virtual Cache Support
Like all previous HP multiprocessor buses, virtually indexed caches are supported by having all coherent transactions also
transmit the virtual address bits that are used to index the processors’ caches. The twelve least-significant address bits are
the offset within a virtual page and are never changed when translating from a virtual to a physical address. Ten virtual
cache index bits are transmitted; these are added to the twelve page-offset bits so that virtual caches up to 4M bytes deep
(22 address bits) can be supported.

Coherent I/O Support
Runway I/O adapters take part in cache coherency, which allows more efficient DMA transfers. Unlike previous systems, no
cache flush loop is needed before a DMA output and no cache purge is needed before DMA input can begin. The Runway
bus protocol defines DMA write transactions that both update memory with new data lines and cause other modules to
invalidate data that may still reside in their caches.

The Runway bus supports coherent I/O in a system with virtually indexed caches. I/O adapters have small caches and both
generate and respond to coherent transactions. The I/O adapters have a lookup table (I/O TLB) to attach virtual index
information to I/O reads and writes, for both DMA accesses and control accesses. For more information see Article 6.

Coherent I/O also reduces the overhead associated with the load-and-clear semaphore operation. Since all noninstruction
accesses in the system are coherent, semaphore operations are performed in the processors’ and I/O adapters’ caches. The
processor or I/O adapter gains exclusive ownership and atomically performs the semaphore operation in its own cache. If
the line is already private in the requester’s cache, no bus transaction is generated to perform the operation, greatly
improving performance. The memory controller is also simplified because it does not need to support semaphore operations
in memory.

The Runway bus has both full-line (32-byte) and half-line (16-byte) DMA input transactions, called WRITE_PURGE and
WRITE16_PURGE. Both transactions write the specified amount of data into memory at the specified address, then invalidate
any copies of the entire line that may be in a processor’s cache. The full-line WRITE_PURGE is the accepted method for DMA
input on systems that have coherent I/O, if the full line is being written. The half-line WRITE16_PURGE is used for 16-byte
writes if enabled via the fast DMA attribute in the I/O TLB. Software programs the I/O TLB with the fast attribute if it knows
that both halves of the line will be overwritten by the DMA. Otherwise, if the I/O TLB does not specify the fast attribute, the
I/O adapter uses the slower read private, merge, write back transaction, which will safely merge the DMA data with any
dirty processor data. The use of WRITE16_PURGE greatly increases DMA input bandwidth for older, legacy I/O cards that use
16-byte blocks.

http://www.hp.com/hpj/feb96/fb96a6.html
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Design Trade-offs
To get the best performance from a low-cost interconnect, the bus designers chose a time multiplexed bus, so that the same
pins and wires can be used for both address and data. Separate address and data buses would have increased the number of
pins needed by about 50%, but would have increased usable bandwidth by only 20%. Since the number of pins on a chip has
a strong impact on chip cost, the time multiplexed address and data bus gives us the best trade-off. A smaller number of
pins is also important to allow the bus interface to be included on the processor chip instead of requiring one or more
separate transceiver chips.

To get the best bandwidth, the designers targeted for the highest bus frequency that could be achieved without requiring
dead cycles for bus turnaround. The use of dead cycles would have allowed a higher nominal frequency, but dead cycles
would have consumed 20 to 30 percent of the bandwidth, for a net loss.

Bandwidth Efficiency
The Runway bus has a rated raw bandwidth of 960 Mbytes/second, which is derived by taking the width of the bus and
multiplying by the frequency: 64 bits � 120 MHz � 8 bits/byte = 960 megabytes/second. However, raw bandwidth is an
almost meaningless measure of the bus, since different buses use the raw bandwidth with greatly differing amounts of
efficiency. Instead, buses should be compared on effective or usable bandwidth, which is the amount of data that is
transferred over time using normal transactions.

To deliver as much of the raw bandwidth as possible as usable bandwidth, the designers minimized the percentage of the
cycles that were not delivering useful data. Transaction headers, used to initiate a transaction, are designed to fit within a
single cycle. Data returns are tagged with a separate transaction ID field, so that data returns do not need a return header.
Finally, electrically, the bus is designed so that dead cycles are not necessary for master changeover. The only inherent
overhead is the one-cycle transaction header.

For 32-byte lines, both read and write transactions take exactly five cycles on the bus: one cycle for the header and four
cycles for data. It doesn’t matter that the read transaction is split. Thus, for the vast majority of the transactions issued on
the bus, 80% of the cycles are used to transmit data. The effective bandwidth is 960 Mbytes/s � 80% = 768 Mbytes/s, which is
very efficient compared to competitive buses.

In addition, the Runway bus is able to deliver its bandwidth to the processors that need the bandwidth. Traditional buses
typically allow each processor to have only a single outstanding transaction at a time, so that each processor can only get at
most about a quarter of the available bandwidth. Runway protocol allows each module—processor or I/O adapter—to have
up to 64 transactions outstanding at a time. The PA 7200 processor uses this feature to have multiple outstanding instruction
and data prefetches, so that it has fewer stalls as a result of cache misses. When a processor really needs the bandwidth, it
can actually get the vast majority of the available 768-Mbyte/s bandwidth.

High Frequency
The Runway protocol is designed to allow the highest possible bus frequency for a given implementation. The protocol is
designed so that no logic has to be performed in the same cycle that data is transmitted from one chip to another chip. Any
logic put into the transmission cycle would add to the propagation delay and reduce the maximum frequency of the bus.
From a protocol standpoint, for this to work, each chip will receive bus signals at the end of one cycle, evaluate those
signals in a second cycle and decide what to transmit, then transmit the response in the third cycle.

To maximize implementation frequency, the Runway bus project took a system-level design approach. All modules on the
bus and the bus itself were designed together for optimal performance, instead of designing an interface specification
permitting any new module to be plugged in as long as it conforms to the specification. We achieved a higher-performance
system with the system approach than we could have achieved with an interface specification.

The I/O driver cells for the different modules were designed together and SPICE-simulated iteratively to get the best
performance. Since short distances are important, the pinouts of the modules are coordinated to minimize unnecessary
crossings and to minimize the worst-case bus paths. See the sidebar: Runway Bus Design Considerations for more
information on the electrical design of the Runway bus.

The bus can be faster if there are fewer modules on it, since there is less total length of bus and less capacitance to drive.
The maximum configuration is limited to six modules—four processors, a dual I/O adapter, and a memory controller—to
achieve the targeted frequency of 120 MHz.

Another optimization made to achieve high bus frequency is the elimination of wire-ORs. By requiring that only one module
drive a signal in any cycle, some traditionally bused signals that require fast response, such as cache coherency check
status, are duplicated, one set per module. Other bused signals that do not require immediate response (e.g., error signals)
are more cost-effectively transformed into broadcast transactions. Adapting the Runway protocol to eliminate wire-ORs
allowed us to boost the bus frequency by 10 to 20 percent.

http://www.hp.com/hpj/feb96/fb96a2sb.html
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