Appendix I: Derivation of the Standard Deviation of Demand Given an R-Week Review Period

\[X = \sum_{i=1}^{L+R} D_i = \sum_{i=1}^{L+R} (P_i + e_i) \]

\[V(X) = E(V(X|L)) + V(E(X|L)) \]

\[= E \left(V \left(\sum_{i=1}^{L+R} (P_i + e_i) \right) \right) + V \left(E \left(\sum_{i=1}^{L+R} (P_i + e_i) \right) \right) \]

\[= E \left(\sum_{i=1}^{L+R} V(P_i + e_i) \right) + V \left(\sum_{i=1}^{L+R} E(P_i + e_i) \right) \]

\[= E \left(\sum_{i=1}^{L+R} \sigma^2 \right) + V \left(\sum_{i=1}^{L+R} P_i \right) \]

\[= \sum_{i=1}^{E(L+R)} E(\sigma^2) + V(\tilde{P}_{L+R}L + R)) \]

\[= (\mu_L + R)\sigma^2 + \tilde{P}_{L+R}^2\sigma^2 \]

Hence,

\[\sigma_X = \sqrt{(\mu_L + R)\sigma^2 + \tilde{P}_{L+R}^2\sigma^2} \]

We estimate \(\sigma_X \) by:

\[\hat{\sigma}_X = \sqrt{(\bar{L} + R)s_{DE}^2 + \tilde{P}_{L+R}^2s_{LE}^2} \]

where:

- \(\bar{L} \) = average lead time from supplier of this part
- \(R \) = review period
- \(s_{DE}^2 \) = variance of the difference between the weekly plan and the actual demand
- \(\tilde{P}^2 \) = average of the plan over L + R weeks
- \(s_{LE}^2 \) = variance of the difference between the date requested and the date received.