Appendix II: The Expected Value and Variance of On-Hand Inventory when there Are no Restrictions on Minimum Buy Quantities

Let:

- \(I \) = On-hand physical inventory
- \(S \) = Order-up-to level
- \(Y \) = Amount of part consumed in first \(L \) weeks of the \((L + R) \)-week cycle
- \(C_S \) = Cycle stock = stock consumption to date during the \(R \)-week portion of the \((L + R) \)-week cycle
- \(SS \) = Safety stock

\[
I = S - Y - C_S
\]

\[
E(I) = E\left(\sum_{i=1}^{L} P_i + SS\right) - E\left(\sum_{i=1}^{L} D_i\right) - E(C_S)
\]

\[
E(I) = \sum_{i=1}^{E(L)+R} P_i + SS - \sum_{i=1}^{E(L)} P_i - E(C_S).
\]

We will consider \(C_S \) to be uniformly distributed between 0 and \(\sum_{i=L+1}^{L+R} D_i \). Thus,

\[
E(I) = \frac{E(L)}{2} \sum_{i=E(L)+1}^{E(L)+R} P_i = SS + \frac{RP_R}{2}.
\]

The variance of \(I \) is derived as follows.

\[
V(I) = V(S) + V(Y) + V(C_S)
\]

Even though the \(P_i \) are not all fixed, and hence \(S \) changes every \(R \) weeks, \(S \) is still a constant with respect to the inventory result during the last \(R \) weeks of every \((L + R) \)-week cycle. Hence, \(V(S) = 0 \).

\[
V(I) = \sum_{i=1}^{L} D_i + V(C_S)
\]

\[
V(I) = \left(\sigma_C^2 + \sigma^2_{L} \right) + V(C_S)
\]

\[
V(C_S) = E\left(\sum_{i=L+1}^{L+R} D_i \right)^2 + V\left(\sum_{i=L+1}^{L+R} D_i \right)
\]

\[
E(C_S) = \frac{D_{L+1} + D_{L+2} + ... + D_{L+R}}{2}
\]
\[
V(\left(C_S \mid D_{L+1}, D_{L+2}, \ldots, D_{L+R} \right)) = V\left(\frac{D_{L+1} + D_{L+2} + \ldots + D_{L+R}}{4} \right)
\]
\[
= \frac{1}{4} V\left((P_{L+1} + e_{L+1}) + (P_{L+2} + e_{L+2}) + \ldots + (P_{L+R} + e_{L+R}) \right)
\]
\[
= \frac{R \sigma_e^2}{4}
\]
\[
V\left(C_S \mid D_{L+1}, D_{L+2}, \ldots, D_{L+R} \right) = \left(\frac{D_{L+1} + D_{L+2} + \ldots + D_{L+R}}{12} \right)^2
\]
\[
E\left(V\left(C_S \mid D_{L+1}, D_{L+2}, \ldots, D_{L+R} \right) \right)
\]
\[
= E\left(\left(\frac{D_{L+1} + D_{L+2} + \ldots + D_{L+R}}{12} \right)^2 \right) = \frac{1}{12} E(G^2),
\]

where \(G = D_{L+1} + D_{L+2} + \ldots + D_{L+R} \).

\[
E(G^2) = (\sigma_h^2 + \mu^2) = \left(R \sigma_e^2 + \left(\sum_{i=L+1}^{L+R} P_i \right) \right)^2
\]
\[
E\left(V\left(C_S \mid D_{L+1}, D_{L+2}, \ldots, D_{L+R} \right) \right) = \frac{1}{12} \left[R \sigma_e^2 + \left(\sum_{i=L+1}^{L+R} P_i \right)^2 \right]
\]
\[
V(C_S) = \frac{1}{12} \left[R \sigma_e^2 + \left(\sum_{i=L+1}^{L+R} P_i \right)^2 \right] + \frac{R \sigma_e^2}{4}
\]

Hence,
\[
V(I) = \sigma_{\Delta h}^2 + \sigma_L^2 \frac{P_L^2}{1} + \frac{1}{12} \left[R \sigma_e^2 + \left(\sum_{i=L+1}^{L+R} P_i \right)^2 \right] + \frac{R \sigma_e^2}{4},
\]

where \(P_L \) is the average of the plan over the \(L \)-week period immediately before the \(R \)-week period in question.