Porting OpenVMs from VAX to Al pha AXP

1 Abstract

The OpenVMS operating system developed by Digital for the VAX fam ly of
conmputers, was recently noved fromthe VAX to the Al pha AXP architecture.
The Al pha AXP architecture is a new RI SC architecture introduced by Digita
in 1992. This paper describes solutions to several problens in porting the
operating system in addition to performance benefits neasured on one of
the systens that inplenents this new architecture.

The VAX architecture is an exanple of conplex instruction set conputing
(ClI SC), whereas the Al pha AXP architecture is based on reduced instruction
set conputing (RISC). The two architectures are very different.[1]

Cl SC architectures have perfornmance di sadvantages as conpared to RI SC
architectures.[2] Digital ported the OpenVMS systemto the Al pha AXP
architecture mainly to deliver the performnce advantages of RISC to
OpenVMS applications. This paper focuses on how Digital's OpenVMS AXP
operating systemgroup dealt with the | arge volunme of VAX assenbly

| anguage and with system kernel nodifications that had VAX architecture
dependenci es.

The OpenVMS AXP group had two inportant requirenents in addition to the
pri mary goal of increasing performance: first, to nake it easy to nove

exi sting users and applications from OpenVMS VAX to OpenVMS AXP syst ens;
second, to deliver a high-quality first version of the product as early

as possible. These requirenents led us to adopt a fairly straightforward
porting strategy with mniml redesigns or rewites. W view the first
version of the OpenVMS AXP product as a begi nning, with other evol utionary
steps to follow

The Al pha AXP architecture was designed for high performance but also with
software migration fromthe VAX to the Al pha AXP architecture in mnd.
Included in the Al pha AXP architecture are sonme VAX features that ease

the m gration without conprom sing hardware performance. VAX features in
the Al pha AXP architecture that are inportant to OpenVMS system software
are: four protection nodes, per-page protection, and 32 interrupt priority
| evel s. The Al pha AXP architecture also defines a privileged architecture
library (PAL) environnent, which runs with interrupts disabled and in the
nost privileged of the four nodes (kernel). PALcode is a set of Al pha AXP
i nstructions that executes in the PAL environnment, inplenmenting such basic
system software functions as translation buffer (TB) miss service. On
OpenVMS AXP systens, PALcode al so inplenents sone OpenVMS VAX features
such as software interrupts and asynchronous traps (ASTs). The conbi nation
of hardware architecture assists and OpenVMS AXP PALcode nmde it easier to
port the operating systemto the Al pha AXP architecture.

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 1

Porting OpenVMs from VAX to Al pha AXP

The VAX architecture is 32-bit; it has 32 bits of virtual address space,
16 32-bit registers, and a conprehensive set of byte, word (16-bit), and

l ongword (32-bit) instructions. The Al pha AXP architecture is 64-bit,

with 64 bits of virtual address space, 64-bit registers (32 integer and 32
floating-point), and instructions that |oad, store, and operate on 64-bit
quantities. There are also longword | oad, store, and operate instructions,
and a canoni cal sign-extended formfor a longword in a 64-bit register

The OpenVMS AXP system has antici pated evolution from 32-bit address

space size to 64-bit address space by changing to a page table fornmat that
supports | arge address space. However, the OpenVMS software assunes that
an address is the sane size as a |longword integer. The sane assunption

can exist in applications. Therefore, the first version of the OpenVMs AXP
system supports 32-bit address space only.

Most of the OpenVMS kernel is in VAX assenbly | anguage (VAX MACRO-

32). Instead of rewiting the VAX MACRO 32 code in another |anguage,

we devel oped a conpiler. In addition, we required inspection and

manual modification of the VAX MACRO 32 code to deal with certain VAX
architectural dependencies. Parts of the kernel that depended heavily on
the VAX architecture were rewitten, but this was a snmall percentage of the
total volume of VAX MACRO 32 source code

2 Conpiling VAX MACRO 32 Code for the Al pha AXP Architecture

Sinply stated, the VAX MACRO 32 conpiler treats VAX MACRO 32 as a source

| anguage to be conpiled and creates native OpenVMS AXP object files

just as a FORTRAN conpiler might. This task is far nore conpl ex than

a sinple instruction-by-instruction translation because of fundanenta
differences in the architectures, and because source code frequently
cont ai ns assunpti ons about the VAX architecture and the OpenVMS Cal ling
Standard on VAX systens.[3,4] The conpiler nust either transparently
convert these VAX dependencies to their OpenVMs AXP counterparts or inform
the user that the source code has to be changed.

Sour ce Code Annotation

We extended the VAX MACRO 32 source | anguage to include entry-point

decl arations and other directives for the conpiler's use, which provide
nore information about the intended behavior of the program Entry-point
decl arations were introduced to allow declaration of: (1) the register
semantics for a routine when the defaults are not appropriate and (2) the
speci ali zed semantics of framel ess subroutines and exception routines to be
decl ar ed.

The differing register size between the VAX and the Al pha AXP architectures
i nfluenced the design of the compiler. On the VAX, MACRO 32 operates on

32-bit registers, and in general, the conpiled code nmaintains 32-bit sign-
extended val ues in Al pha AXP 64-bit registers. However, this code is now
part of a systemthat uses true 64-bit values. As a result, we designed
the conpiler to generate 64-bit register saves of any registers nodified

2 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992

Porting OpenVMs from VAX to Al pha AXP

in aroutine, as part of the "routine prologue code." Automatic register
preservation has proven to be the safest default but nust be overridden

for routines that return values in registers, using appropriate entry-point
decl arati ons.

O her directives allow the user to provide additional information about
regi ster state and code flow to i nprove generated code. Another class of
directives instructs the conpiler to preserve the VAX behavior with respect
to granularity of nenory wites or atomicity of menory updates. The Al pha
AXP architecture makes atom ¢ updates and guaranteed wite granularity
sufficiently costly to performance that they should be enabl ed only when
requi red. These concepts are discussed in the section Major Architectura

Di fferences in the OpenVMsS Ker nel

I dentifying VAX Architecture and Calling Standard Dependenci es

As nmentioned earlier, the conpiler must either transparently support
VAX architecture-dependent constructs or informthe user that a source
change is necessary. A good exanple of the latter case is reliance on
VAX JSB/ RSB (junp to subroutine and return) instruction return address
semantics. On VAX systens, a JSB instruction | eaves the return address
on top of the stack, which is used by the RSB instruction to return.[3]
System subroutines often take advantage of this semantic in order to
change the return address. This level of stack control is not avail able
in a conpiled | anguage. In porting the OpenVMs systemto the Al pha AXP
architecture, we devel oped alternative coding practices for this and many
ot her nontransportabl e idi ons.

The conpiler nmust also account for the differences in the OpenVMS Calling
Standard on the VAX and Al pha AXP architectures. Although transparent to
hi gh-1evel | anguage programrers, these differences are very significant in
assenbly | anguage programming.[4] To operate correctly in a m xed | anguage
envi ronnent, the code generated by the VAX MACRO 32 conpil er nust conform
to the OpenVMs Calling Standard on the Al pha AXP architecture.

On VAX systens, a routine refers to its argunments by neans of an argunent
poi nter (AP) register, which points to an argunent list that was built in
menory by the routine's caller. On Al pha AXP systenms, up to six routine
argunents are passed to the called routine in registers; any additiona
argunents are passed in stack |ocations. Normally, the VAX MACRO 32
conpi l er transparently converts AP-based references to their correct Al pha
AXP | ocations and converts the code that builds the list to initialize

the argunents correctly. In some cases, the conpiler cannot convert al
references to their new | ocations, so an enul ated VAX argunment |ist nust be
constructed fromthe argunments received in the registers. This so-called
"hom ng" of the argunent list is required if the routine contains indexed
references into the argunment |list or stores or passes the address of an

argunment list element to another routine.

Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992 3

Porting OpenVMs from VAX to Al pha AXP

The conpiler identifies these coding practices during its process of flow
analysis, which is simlar to the analysis done by a standard hi gh-1eve

| anguage optim zing conpiler. The conpiler builds a flow graph for each
routine and tracks stack depth, register use, condition code use, and

| oop depth through all paths in the routine flow. This sane infornmation
is required for generating correct and efficient code.

Access to Al pha AXP Instructions and Registers

In addition to providing mgration of existing VAX code, the VAX MACRO

32 conpiler includes support for a subset of Al pha AXP instructions and
PALcode calls and access to the 16 integer registers beyond those that map
to the VAX register set. The instructions supported either have no direct
counterpart in the VAX architecture or are required for efficient operation
on a full 64-bit register value. These "built-ins" were required because
the OpenVMS AXP system uses full 64-bit values for some operations, such as
mani pul ati on of 64-bit page table entries (PTES).

Optim zation

The conpiler includes certain optimzations that are particularly inportant
for the Al pha AXP architecture. For exanple, on a VAX system a reference
to an external synmbol would not be considered expensive. On an Al pha

AXP system however, such a reference requires a load fromthe |inkage
section to obtain the address of the synbol prior to | oading the synbol's
val ue. (The linkage section is a data region used for resolving externa
references.[4]) Miltiple | oads of this address fromthe |inkage section
may be reduced to a single |load, or the | oad may be noved out of a loop to
reduce nenory references.

Ot her optimzations include the elimnation of nenory reads on multiple
safe references, register state tracking for optinmal register-based

menory references, redundant regi ster save/restore renoval, and many

| ocal code generation optimzations for particular operand types. Peephol e
optim zation of |ocal code sequences and | ow- | evel instruction scheduling
are performed by the back end of the conpiler

In sonme instances, the progranmer has know edge of register state or other
code behavior that cannot be inferred fromthe source code al one. Conpiler
directives are provided for specifying register alignnent state, structure
base address alignnment, and likely flow paths at branch points.

Certain types of optimzation typically performed by a high-1level |anguage
conpi |l er cannot be performed by the VAX MACRO 32 conpil er, because
assunpti ons made by the MACRO 32 programrer cannot be broken. For exanpl e,
the order of nmenory reads may not be changed.

4 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992

Porting OpenVMs from VAX to Al pha AXP

3 Mjor Architectural Differences in the OpenVMS Kerne

This section concentrates on architectural changes that affect
synchroni zation, nmenory nmanagenent, and |/O. These are not the only
architectural differences that cause significant changes in the kernel
However, they are the major differences and are representative of

the effort involved in porting the OpenVMs systemto the Al pha AXP
architecture.

For the nmost part, it was possible to isolate architecture-dependent
changes to a few mj or subsystens. However, differences in the menory
reference architecture had a pervasive inpact on users of shared data and
many comon synchroni zation techni ques. Other differences such as those
related to nenory managenent, context switching, or access to |/O devices
were confined nostly to the rel evant subsystens.

Ef fects of Architectural Differences in Menory Subsystens

The followi ng differences between the VAX and Al pha AXP nenory reference
architectures affected synchronization:[1, 3]

0 Load/store architecture rather than atomic nodify instructions
o Longword and quadword wites with no byte wite instructions
0 Read/wite ordering not guaranteed

Load/store nenory reference instructions are characteristic of npost RI SC
desi gns. However, the other differences are less typical. The reasons for
all three differences were hardware sinplification and opportunities

for increased hardware performance.[1] These differences result in

signi ficant changes in systemsoftware and in many opportunities for subtle
errors, which can be detected only under heavy |oad. Adapting to these
architectural changes wi thout greatly inpacting performance was one of the
maj or chal |l enges that faced the group in porting the OpenVMS systemto the
Al pha AXP architecture.

A | oad/store architecture such as Al pha AXP cannot provide the atomc
read-nmodi fy-wite instructions present in the VAX architecture. Thus,

i nstruction sequences are necessary for nmany operations perfornmed by a
single, atomic VAX instruction, such as increnmenting a nmenory |ocation. The
consequence is a need for increased awareness of synchronization. I|nstead
of depending on hardware to prevent interference between nultiple threads
of execution on a single processor, explicit software synchroni zati on may
be required. Wthout this synchronization, the interleaving of independent

| oad- nodi fy-store sequences to a single nenory location nmay result in
overwitten stores and other incorrect results.

The |l ack of byte wites inposes additional synchronization burdens on
software. Unli ke VAX and npst RI SC systens, an Al pha AXP system has
instructions to wite only | ongwords and 64-bit quadwords, not bytes

or words. Thus to wite bytes, the software must include a sequence of

i nstructions that reads the enconpassi ng | ongword, nerges in the byte, and

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 5

Porting OpenVMs from VAX to Al pha AXP

writes the longword to nenory. As a consequence, software nmust be concerned
not only with shared access to the sanme nenory cell by nmultiple threads,

but also with access to i ndependent but adjacent variables. Synchronization
awar eness i s now extended from shared data to data itens that are nerely
near each other.

The OpenVMS AXP operating system group avoi ded the above-nenti oned probl ens
i ntroduced by the architectural changes in one of three ways:

o Explicit software synchronization was added between threads.
o Data itens were relocated to aligned | ongwords or quadwords.
o Al pha AXP | oad | ocked and store conditional instructions were used.

The obvi ous solution of adding explicit synchronization in the formof a
software | ock is not always appropriate for several reasons. First, the
probl em may be i ndependent data itens that happen to share a | ongword.
Synchronizing this sort of access in unrelated code paths is prone to
error. Explicit synchronization nmay al so have an unacceptabl e perfornmance
i mpact. Finally, deadlocks are a possibility if one thread interrupts
anot her .

Ensuring that data items are in aligned | ongwords or quadwords both

i mproves performance and elimnates interactions between unrel ated dat a.
This technique is used wherever possible but cannot be used in two mgjor
cases. One case occurs when the replication factor is too |arge. Expandi ng
an array of thousands of bytes to | ongwords may sinply not be acceptable.
The other major problemcase is data structures that cannot be changed
because of external constraints. For exanple, data may represent a protoco
nmessage or a structure primarily resident on disk. Separate internal and
external forms of such data structures could exist, but the performance
cost of continuous conversions nmay not be acceptabl e.

Often the easiest and hi ghest-performance way to sol ve synchroni zation
problenms is to use sequences of |oad | ocked and store conditiona

i nstructions. The load | ocked instruction | oads an aligned | ongword

or quadword while setting a hardware flag that indicates the physica
address that was | oaded. The hardware flag is cleared if any other thread,
processor, or |I/O device wites to the |ocked nenory |ocation. The store
conditional instruction stores an aligned | ongword or quadword if and only
if the hardware lock flag is still set. Otherwi se, the store returns an
error indication w thout nodifying the storage |ocation. These instructions
all ow the construction of atom c read-nmodify-write sequences to update any
datum that is contained within a single aligned quadword. These sequences
of instructions are significantly slower than nornmal | oads and stores due
to the necessity of waiting for the wite to reach a point in the nenory

hi erarchy where consi stency can be guaranteed. In addition, their use
may i nhibit many conpiler optimzations because of restrictions on the

i nstructions between the | oad and store. Although faster than nost other
synchroni zati on net hods, this mechani sm shoul d be used sparingly.

6 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992

Porting OpenVMs from VAX to Al pha AXP

The | ack of guaranteed read/wite ordering between nultiple processors
is another conplication for the programrer trying to achi eve proper
synchroni zation. Although not visible on a single processor, this |ack

of ordering nmeans that one processor will not necessarily observe nenory
operations in the order in which they were issued by another processor
Thus, many obvi ous synchroni zation protocols will not work when wites to

the synchronization variable and to the data being protected are observed
to occur out of order. A nmenory barrier instruction is provided in the
architecture to ensure ordering. However, the negative inmpact of this

i nstruction on system performance requires that it be used only when
necessary.

As described in the previous section, we used various nechanisns to solve
t he synchronization problens. Having nultiple solutions allowed us to
choose the one with the | east performance i npact for each case. In sone
cases, explicit synchronization was already in place due to rmultiprocessor
synchroni zation requirenments. In other cases, we expanded data structures
at a cost of npdest ampunts of nmenory to avoi d expensive synchronization
when referencing data.

Privileged Architecture Changes

Unli ke the pervasive architectural changes described in the previous
section, the privileged architecture differences had a nore linited inpact.
The primary remaining areas of change are the new page table formats and
the details of process context switching. This section describes nmenory
managenment as a representative exanple. However, many |limited changes stil
anount to nmodifying virtually every source nodule in the OpenVMS ker nel
even if only to add conpiler directives.

Menory Managenent. Not surprisingly, the nmenory management subsystem

requi red the nost change when noving fromthe VAX to the Al pha AXP
architecture. Aside fromthe obvious 64-bit addressing capability, two
significant differences exist between the page table structures on the

VAX and the Al pha AXP architectures. First, Al pha AXP does not have an
architectural division between shared and process private address space.
Second, the Al pha AXP three-|level page table structure shown in Figure 1
allows the sharing of arbitrary subtrees of the page table structure and
the efficient creation of |arge, sparse address spaces. In addition, future
Al pha AXP processors may have | arger page sizes.

To nmeet our schedule goals, we decided initially to emulate the VAX
architecture's 32-bit address space as closely as possible. This decision
required creating a 2-gigabyte (GB) process private address region (i.e.
VAX PO and Pl) and a 2GB shared address region (i.e., VAX SO and Sl1) for
each process. This is easily acconplished by giving each process a private
| evel 1 page table (L1PT) that contains two entries for level 2 page tables

(L2PTs). One of these L2PTs is shared and i nplenents the shared system
regi on, whereas the other is private and inplenents the process private
address regions. Although the smallest allowed page size of 8 kil obytes
(KB) results in an 8GB region for each |level 2 page table, we use only 2GB

Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992 7

Porting OpenVMs from VAX to Al pha AXP

of each region to keep within our 4GB 32-bit limt. As shown in Figure 1
the L2PTs are chosen to place the base address of the shared systemregion
at FFFFFFFF80000000 (hexadecimal), the sane as the sign-extended address of
the top half of the VAX architecture's 32-bit address space.

Al t hough changes were extensive in the nmenory nmanagenent subsystem nmany
were not conceptually difficult. Once we dealt with the new page table
structure, nost changes were nerely for alternative page sizes, new page
table entry formats, and changes to associated data structures. W did
decide to keep the OpenVMs VAX concept of mapping process page tables as
a single array in shared system space for our initial inplenentation.

Al t hough not viable in the long termdue to the potentially huge size

of sparse process page tables, this decision mninmzed changes to code
that references process page tables. Having process page tables visible
in shared system space turned out to be a significant conplication in
pagi ng and in address space creation, but the schedul e benefits derived
from avoi di ng changes to other subsystens were considered worthwhile. W
expect to change to a nore general mechani sm of sel f-nmappi ng process page
tabl es in process space for a subsequent OpenVMs AXP rel ease.

Ret ai ni ng the VAX appearance of process page tables allowed us to neet
our goals of mnimum change outside of the nenory managenent subsystem
Unprivil eged code is unaffected by the nmenory namnagenent changes unl ess
it is sensitive to the new page size. Even privileged code is generally
unaf fected unless it has know edge of the length or format of PTEs.

Optim zed Transl ation Buffer Use. Thus far, we may have given the

i mpression that architectural changes al ways create problenms for software.
This was not universally true; sone changes offered us opportunities for
signi ficant gains. One such change was an Al pha AXP translation buffer
feature called granularity hints. TBs are key to performance on any
virtual nmenory system Wthout them it would be necessary to reference
mai n menory page tables to translate every virtual address to a physica
address. However, there never seenms to be enough TB entries. The Al pha AXP
architecture allows a single TB entry to optionally map a virtually and
physi cal ly contiguous bl ock of properly aligned pages, all with identica
protection attributes. These pages are marked for the hardware by a flag in
the PTE.

G ven granularity hints, near-zero TB miss rates for the kernel becane
attainable. To this end, we enhanced the kernel |oading nechanisns to
create and use granularity hint regions.

The OpenVMS AXP kernel is made up of nmany separate i mges, each of which
contai ns several regions of nenory with varying protections. For exanple,
there is read-only code, read-only data, and read-wite data. Normally, a
kernel image is loaded virtually contiguously and relocated so that it can

execute at any address. To take advantage of granularity hints, kernel code
and data are | oaded in pieces and relocated to execute from di sconti guous
regions of nenory. Only a very few TB entries are actually used to map the
entire nonpaged kernel, and the goal of near-zero TB ni sses was reached.

8 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992

Porting OpenVMs from VAX to Al pha AXP

The benefits of granularity hints becane i medi ately obvious, and the
mechani sm has since been expanded. Now, the OpenVMs AXP system al so uses
the code region for user inmages and libraries. This feature extends the
benefits not only to i mages supplied by the OpenVMs system but to custoner
applications and | ayered products as well. O course, usage of this feature
is only reasonable for imges and |ibraries used so frequently that

the permanent allocation of physical nenory is warranted. However, nost
applications are likely to have such images, and the perfornmance advantage
can be inpressive.

/0

Unlike the architectural changes, the new I/O architecture structures an
area that previously was rather uncontrolled. The project goal was to allow
nore flexibility in defining hardware I/ O systenms while presenting software
with a consistent interface. These seem|i ke contradictory ains, but both
nmust be met to build a range of conpetitive, high-performance hardware that
can be supported with a reasonable software effort.

The Al pha AXP architecture presents a nunmber of differences and chall enges
that inpacted the OpenVMs AXP |/ O system These changes spanned areas from
| ongword granularity to device control and status register (CSR) access to
how adapters may be built.

CSR Access. A fundanental element of 1/Ois the access of CSRs. On VAX
systenms, CSR access is acconplished as sinply another nenory reference that
is subject to a few restrictions. Al pha AXP systens present a variety of
CSR access nodel s.

Early in the project, the concept of |I/0O mail boxes was devel oped as an
alternative CSR access nodel. The I1/O mailbox is basically an aligned piece
of menory that describes the intended CSR access. |nstead of referencing
CSRs by nmeans of instructions, an I/O mailbox is constructed and used as

a command packet to an |1/O processor. The mail box solves three probl ens:
the mail box allows access to an |/ O address space | arger than the address
space of the system byte and word references may be specified; and the
systembus is sinplified by not having to accommdate CSR references that
may stall the bus. As systens get faster, these bus stalls are increasingly
| arger inpedinents to performance

Mai | boxes are the |/ O access nechani smon sone, but not all, systens. To
preserve investnent in driver software, the OpenVMsS AXP operating system
i mpl emented a nunber of routines that allow all drivers to be coded as if
CSRs were accessed by a mail box. Systens that do not support mailbox 1/0
have routines that enulate the access. These routines provide insulation
fromhardware inplenmentation details at the cost of a slight performance
i mpact. Drivers may be written once and used on a nunber of differing

syst ens.

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 9

Porting OpenVMs from VAX to Al pha AXP

Read/ Wite Ordering. An I/O device is sinply another processor, and

the sharing of data is a nmultiprocessing issue. Since the Al pha AXP
architecture does not provide strict read/wite ordering, a nunmber of rules
nmust be followed to prevent incorrect behavior. One of the easiest changes
is to use the nmenory barrier instructions to force ordering. Driver code
was nodified to insert nenory barriers where appropriate.

The devices and adapters nust also follow these rules and enforce proper
ordering in their interactions with the host. An exanple is the requirenent
that an interrupt also act like a nmenory barrier in providing ordering. In
addition, the device must ensure proper ordering for access to shared data
and direct nmenory access.

Kernel Processes. Another inportant way in which the Al pha AXP architecture
differs fromthe VAX architecture is the lack of an interrupt stack. On

VAX systens, the interrupt stack is a separate stack for system context.
Wth the new Al pha AXP design, any system code nust use the kernel stack

of the current process. Therefore, a process kernel stack nust be |arge
enough for the process and for any nested systemactivity. This burden is
unr easonabl e. A second problemis that the VAX |/ O subsystem depends on
absol ute stack control to inplenment threads. As a result, nmost of the I/O
code is in MACRO 32, which is a conpiled | anguage on the OpenVMs AXP system
t hat does not provide absolute stack control

These facts resulted in the creation of a kernel threadi ng package for
system code at elevated interrupt priority levels. This package, called
kernel processes, provides a set of routines that support a private
stack for any given thread of execution. The routines include support for
starting, termnating, suspending, and resunming a thread of execution.

The private stack is managed and preserved across the suspension with no
speci al neasures on the part of the execution thread. Renobving requirenents
for absolute stack control will facilitate the introduction of high-Ieve

| anguages into the 1/0O system

4 Performnce

As stated earlier, the main purpose of the project was to deliver the
performance advantages of RI SC to OpenVMS applications. W adopted

several nethods, including sinmulation, trace analysis, and a variety

of neasurenents, to track and inprove operating system and application
performance. This section presents data on the performnce of OpenVMS
services and on the SPEC Rel ease 1 benchmark suite.[5] Note that all Al pha
AXP results are prelimnary.

10 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992

Porting OpenVMs from VAX to Al pha AXP

Per f ormance of OpenVMS Servi ces

To eval uate the performance of the OpenVMS system we used a set of tests
that nmeasure the CPU processing tinme of a range of OpenVMS services.

These tests are neither exhaustive nor representative of any particul ar
wor kl oad. We use rel ative CPU speed (i.e., VAX CPU tinme divided by Al pha
AXP CPU tine) as a netric to truly conmpare CPU performance. For |1/ Orelated
services, a RAM disk was used to elinmnate I1/0O | atencies.

The tests were run on a VAX system and an Al pha AXP systemthat are the
same except for the CPU. Table 1 shows the configuration details of the

two systens. Figure 2 shows the distribution of the relative CPU speed for
the OpenVMS services neasured. Mpst tests ran between 0.9 and 1.7 tines
faster on the Al pha AXP systemthan on the VAX system Table 2 contains the
results for a representative subset of the nmeasured OpenVMS services.

Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992 11

Porting OpenVMs from VAX to Al pha AXP

Application Performance

Applications vary in their use of operating system services. Mbst
applications spend the majority of their tine perform ng application-
specific work and a small fraction of their time using operating system
services. For these applications, performance depends nmainly on the
performance of hardware, conpilers, and run-tinme libraries. W used the
SPEC Rel ease 1 benchmarks as representative of such applications. Table

3 shows the details of the VAX and Al pha AXP systens on which the SPEC
Rel ease 1 suite was run, and Table 4 contains the results. The SPECnar k89
conpari son shows that the OpenVMS AXP system outperfornms the OpenVMs VAX
system by a factor of 3.59.

The performance of OpenVMS services and the SPECmark results are consi stent
with other studies of how operating systemprimtives and SPEChmark results
scal e between CI SC and RI SC.[6] Overall, the results are very encouragi ng
for a first-version product in which redesigns were purposely linted to
nmeet an aggressive schedul e.

5 Concl usions

Some OpenVMS VAX features such as symmetric multiprocessing and VMScl uster
support were deferred fromthe first version of the OpenVMS AXP system
Beyond this, we anticipate taking significant steps to better exploit the
har dware architecture, including evolving to a true 64-bit operating system
in a staged fashion. Also, detailed analysis of performance results shows
the need to alter internal designs to better nmatch RI SC architecture.
Finally, a gradual replacenment of VAX MACRO 32 source with a high-1leve

| anguage is essential to support a 64-bit virtual address space and is an

i mportant el enent for increasing performance.

The OpenVMS AXP system clearly denpnstrates the viability of meking
dramatic changes in the fundanmental assunptions of a mature operating
system whi |l e preserving the investnment in software | ayered on the system
The future challenge is to continue operating systemevolution in order to
provi de nore capabilities to applications while maintaining that essentia
| evel of conpatibility.

6 Acknow edgnents

The work described in this paper was done by nmenbers of the OpenVMs AXP
operating system group. This work woul d have been inpossible w thout the
hel p of many software and hardware engi neering groups at Digital. Thanks to
Bradl ey Waters, who neasured OpenVMs performance, and to John Shakshober
and Sandeep Deshnukh, who obtai ned the SPEC Rel ease 1 benchmark results. W
al so thank Barbara A. Heath and Kathleen D. Morse for their conments, which
hel ped in preparing this paper

12 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992

9

Porting OpenVMs from VAX to Al pha AXP

Ref erences

R Sites, "Alpha AXP Architecture," Digital Technical Journal, vol. 4,
no. 4 (1992, this issue): 19-34.

D. Bhandarkar and D. Clark, "Performance from Architecture: Conparing
a RISC and a CISCwith Simlar Hardware Organi zation," Proceedi ngs

of the Fourth International Conference on Architecture Support for
Programm ng Languages and Operating Systens (ASPLOS-1V) (New York, NY:
The Associ ation for Conputing Machinery, 1991): 310-319.

T. Leonard, ed., VAX Architecture Reference Manual (Bedford, MA: Digita
Press, 1987).

OpenVMs Cal ling Standard (Maynard, MA: Digital Equi pment Corporation
Cct ober 1992).

Spec Newsletter, vol. 4, no. 1 (March 1992).

T. Anderson, H. Levy, B. Bershad, and E. Lazowska, "The Interaction of
Architecture and Operating System Design," Proceedings of the Fourth

I nternational Conference on Architecture Support for Programming
Languages and Operating Systems (ASPLOS-1V) (New York, NY: The

Associ ation for Computing Machinery, 1991): 108-120.

General References

R. Col denberg and S. Saravanan, VMS for Al pha Platforns Internals and
Data Structures, Prelimnary edition of vols. 1 and 2 (Maynard, MA:
Digital Press, 1993, forthcom ng).

J. Hennessy and D. Patterson, Computer Architecture, A Quantitative
Approach (San Mateo, CA: Mrgan Kaufmann Publishers, Inc., 1990).

R Sites, ed., Alpha Architecture Reference Manual (Burlington, MA:
Digital Press, 1992).

Tr ademar ks

The following are trademarks of Digital Equi prent Corporation

Al pha AXP, AXP, OpenVMsS, OpenVMsS AXP, and VMScl uster.

No third-party trademarks.

Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992 13

Porting OpenVMs from VAX to Al pha AXP

10 Biographies

Nancy P. Kronenberg Nancy Kronenberg joined Digital in 1978 and has

devel oped VMS support for several VAX systens. She designed and wote

the VM5 Cl port driver and part of the VMScluster System Communications
Services. In 1988, Nancy joined the teamthat investigated alternatives

to the VAX architecture and drafted the proposal for the Al pha AXP
architecture and for porting the OpenVMS operating systemto it. Nancy is a
seni or consulting software engi neer and technical director for the OpenVMS
AXP Group. She holds an A.B. degree in physics from Cornell University.

Thomas R. Benson A consulting engineer in the OpenVMS AXP Group, Tom Benson
was the project |eader and principal designer of the VAX MACRO 32 conpil er
Prior to his Al pha AXP contributions, he |led the VM5 DECw ndows Fil eVi ew
and Session Manager projects and brought the Xlib graphics library to the
VMS operating system Earlier, he supported an optin zing conpiler shel
used by several VAX conpilers. Tomjoined Digital's VAX Basic project

in 1979, after receiving B.S. and MS. degrees in conputer science from
Syracuse University. He has applied for four patents related to his Al pha
AXP wor K.

Wayne M Cardoza Wayne Cardoza is a senior consultant engineer in the
OpenVMsS AXP Group. Since joining Digital in 1979, he has worked in various
areas of the OpenVMs kernel. Wayne was al so one of the architects of PRI SM
an earlier Digital RISC architecture; he holds several patents for his
work. More recently, Wayne participated in the design of the Al pha AXP
architecture and was a nmenber of the initial design teamfor the OpenVMsS
port. Before conming to Digital, Wayne was enpl oyed by Bell Laboratories.
Wayne received a B.S.E.E. from Southern Massachusetts University and an
MS.E.E. fromMT.

Ravi ndran Jagannat han Ravi ndran Jagannathan is a principal software

engi neer in the OpenVMS Performance Group currently investigating OpenVMS
AXP nul ti processing performance. Since 1986, he has worked on performance
anal ysis and characterization, and al gorithmdesign in the areas of OpenVMS
servi ces, SMP, VAXcluster systens, and host-based vol une shadow ng.

Ravi ndran received a B.E. (honors, 1983) fromthe University of Mdras,
India, and M S. degrees (1986) in operations research and statistics and in
conmput er and systens engi neering from Renssel aer Pol ytechnic Institute.

Benjamin J. Thonmas |11 Benjam n Thomas joined the OpenVMS AXP project in
1989 as project |leader for 1/0O subsystem design and porting. In this role,
he has also contributed to the I/O architecture of current and future

AXP systenms. Ben joined Digital in 1982 and has worked in the VMS group
since 1984. In prior work, he was the director of software engineering at a
m croconputer firm Ben is a consulting engineer and has a B.S. (1978) in
physics fromthe University of New Hanpshire and an M S. C.S. (1990) from

Wor cester Pol ytechnic Institute.

14 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992

Copyright 1992 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi pment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be
distributed for comrerci al advantage. Abstracting with credit of Digita

Equi pment Corporation's authorship is permitted. All rights reserved.

