
 

                   Porting OpenVMS from VAX to Alpha AXP

1  Abstract

 The OpenVMS operating system, developed by Digital for the VAX family of
computers, was recently moved from the VAX to the Alpha AXP architecture.
The Alpha AXP architecture is a new RISC architecture introduced by Digital
in 1992. This paper describes solutions to several problems in porting the
operating system, in addition to performance benefits measured on one of
the systems that implements this new architecture.

The VAX architecture is an example of complex instruction set computing
(CISC), whereas the Alpha AXP architecture is based on reduced instruction
set computing (RISC). The two architectures are very different.[1]
CISC architectures have performance disadvantages as compared to RISC
architectures.[2] Digital ported the OpenVMS system to the Alpha AXP
architecture mainly to deliver the performance advantages of RISC to
OpenVMS applications. This paper focuses on how Digital's OpenVMS AXP
operating system group dealt with the large volume of VAX assembly
language and with system kernel modifications that had VAX architecture
dependencies.

The OpenVMS AXP group had two important requirements in addition to the
primary goal of increasing performance: first, to make it easy to move
existing users and applications from OpenVMS VAX to OpenVMS AXP systems;
second, to deliver a high-quality first version of the product as early
as possible. These requirements led us to adopt a fairly straightforward
porting strategy with minimal redesigns or rewrites. We view the first
version of the OpenVMS AXP product as a beginning, with other evolutionary
steps to follow.

The Alpha AXP architecture was designed for high performance but also with
software migration from the VAX to the Alpha AXP architecture in mind.
Included in the Alpha AXP architecture are some VAX features that ease
the migration without compromising hardware performance. VAX features in
the Alpha AXP architecture that are important to OpenVMS system software
are: four protection modes, per-page protection, and 32 interrupt priority
levels. The Alpha AXP architecture also defines a privileged architecture
library (PAL) environment, which runs with interrupts disabled and in the
most privileged of the four modes (kernel). PALcode is a set of Alpha AXP
instructions that executes in the PAL environment, implementing such basic
system software functions as translation buffer (TB) miss service. On
OpenVMS AXP systems, PALcode also implements some OpenVMS VAX features
such as software interrupts and asynchronous traps (ASTs). The combination
of hardware architecture assists and OpenVMS AXP PALcode made it easier to
port the operating system to the Alpha AXP architecture.
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The VAX architecture is 32-bit; it has 32 bits of virtual address space,
16 32-bit registers, and a comprehensive set of byte, word (16-bit), and
longword (32-bit) instructions. The Alpha AXP architecture is 64-bit,
with 64 bits of virtual address space, 64-bit registers (32 integer and 32
floating-point), and instructions that load, store, and operate on 64-bit
quantities. There are also longword load, store, and operate instructions,
and a canonical sign-extended form for a longword in a 64-bit register.

The OpenVMS AXP system has anticipated evolution from 32-bit address
space size to 64-bit address space by changing to a page table format that
supports large address space. However, the OpenVMS software assumes that
an address is the same size as a longword integer. The same assumption
can exist in applications. Therefore, the first version of the OpenVMS AXP
system supports 32-bit address space only.

Most of the OpenVMS kernel is in VAX assembly language (VAX MACRO-
32). Instead of rewriting the VAX MACRO-32 code in another language,
we developed a compiler. In addition, we required inspection and
manual modification of the VAX MACRO-32 code to deal with certain VAX
architectural dependencies. Parts of the kernel that depended heavily on
the VAX architecture were rewritten, but this was a small percentage of the
total volume of VAX MACRO-32 source code.

2  Compiling VAX MACRO-32 Code for the Alpha AXP Architecture

Simply stated, the VAX MACRO-32 compiler treats VAX MACRO-32 as a source
language to be compiled and creates native OpenVMS AXP object files
just as a FORTRAN compiler might. This task is far more complex than
a simple instruction-by-instruction translation because of fundamental
differences in the architectures, and because source code frequently
contains assumptions about the VAX architecture and the OpenVMS Calling
Standard on VAX systems.[3,4] The compiler must either transparently
convert these VAX dependencies to their OpenVMS AXP counterparts or inform
the user that the source code has to be changed.

Source Code Annotation

We extended the VAX MACRO-32 source language to include entry-point
declarations and other directives for the compiler's use, which provide
more information about the intended behavior of the program. Entry-point
declarations were introduced to allow declaration of: (1) the register
semantics for a routine when the defaults are not appropriate and (2) the
specialized semantics of frameless subroutines and exception routines to be
declared.

The differing register size between the VAX and the Alpha AXP architectures
influenced the design of the compiler. On the VAX, MACRO-32 operates on



32-bit registers, and in general, the compiled code maintains 32-bit sign-
extended values in Alpha AXP 64-bit registers. However, this code is now
part of a system that uses true 64-bit values. As a result, we designed
the compiler to generate 64-bit register saves of any registers modified
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in a routine, as part of the "routine prologue code." Automatic register
preservation has proven to be the safest default but must be overridden
for routines that return values in registers, using appropriate entry-point
declarations.

Other directives allow the user to provide additional information about
register state and code flow to improve generated code. Another class of
directives instructs the compiler to preserve the VAX behavior with respect
to granularity of memory writes or atomicity of memory updates. The Alpha
AXP architecture makes atomic updates and guaranteed write granularity
sufficiently costly to performance that they should be enabled only when
required. These concepts are discussed in the section Major Architectural
Differences in the OpenVMS Kernel.

Identifying VAX Architecture and Calling Standard Dependencies

As mentioned earlier, the compiler must either transparently support
VAX architecture-dependent constructs or inform the user that a source
change is necessary. A good example of the latter case is reliance on
VAX JSB/RSB (jump to subroutine and return) instruction return address
semantics. On VAX systems, a JSB instruction leaves the return address
on top of the stack, which is used by the RSB instruction to return.[3]
System subroutines often take advantage of this semantic in order to
change the return address. This level of stack control is not available
in a compiled language. In porting the OpenVMS system to the Alpha AXP
architecture, we developed alternative coding practices for this and many
other nontransportable idioms.

The compiler must also account for the differences in the OpenVMS Calling
Standard on the VAX and Alpha AXP architectures. Although transparent to
high-level language programmers, these differences are very significant in
assembly language programming.[4] To operate correctly in a mixed language
environment, the code generated by the VAX MACRO-32 compiler must conform
to the OpenVMS Calling Standard on the Alpha AXP architecture.

On VAX systems, a routine refers to its arguments by means of an argument
pointer (AP) register, which points to an argument list that was built in
memory by the routine's caller. On Alpha AXP systems, up to six routine
arguments are passed to the called routine in registers; any additional
arguments are passed in stack locations. Normally, the VAX MACRO-32
compiler transparently converts AP-based references to their correct Alpha
AXP locations and converts the code that builds the list to initialize
the arguments correctly. In some cases, the compiler cannot convert all
references to their new locations, so an emulated VAX argument list must be
constructed from the arguments received in the registers. This so-called
"homing" of the argument list is required if the routine contains indexed
references into the argument list or stores or passes the address of an



argument list element to another routine.
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The compiler identifies these coding practices during its process of flow
analysis, which is similar to the analysis done by a standard high-level
language optimizing compiler. The compiler builds a flow graph for each
routine and tracks stack depth, register use, condition code use, and
loop depth through all paths in the routine flow. This same information
is required for generating correct and efficient code.

Access to Alpha AXP Instructions and Registers

In addition to providing migration of existing VAX code, the VAX MACRO-
32 compiler includes support for a subset of Alpha AXP instructions and
PALcode calls and access to the 16 integer registers beyond those that map
to the VAX register set. The instructions supported either have no direct
counterpart in the VAX architecture or are required for efficient operation
on a full 64-bit register value. These "built-ins" were required because
the OpenVMS AXP system uses full 64-bit values for some operations, such as
manipulation of 64-bit page table entries (PTEs).

Optimization

The compiler includes certain optimizations that are particularly important
for the Alpha AXP architecture. For example, on a VAX system, a reference
to an external symbol would not be considered expensive. On an Alpha
AXP system, however, such a reference requires a load from the linkage
section to obtain the address of the symbol prior to loading the symbol's
value. (The linkage section is a data region used for resolving external
references.[4]) Multiple loads of this address from the linkage section
may be reduced to a single load, or the load may be moved out of a loop to
reduce memory references.

Other optimizations include the elimination of memory reads on multiple
safe references, register state tracking for optimal register-based
memory references, redundant register save/restore removal, and many
local code generation optimizations for particular operand types. Peephole
optimization of local code sequences and low-level instruction scheduling
are performed by the back end of the compiler.

In some instances, the programmer has knowledge of register state or other
code behavior that cannot be inferred from the source code alone. Compiler
directives are provided for specifying register alignment state, structure
base address alignment, and likely flow paths at branch points.

Certain types of optimization typically performed by a high-level language
compiler cannot be performed by the VAX MACRO-32 compiler, because
assumptions made by the MACRO-32 programmer cannot be broken. For example,
the order of memory reads may not be changed.
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3  Major Architectural Differences in the OpenVMS Kernel

This section concentrates on architectural changes that affect
synchronization, memory management, and I/O. These are not the only
architectural differences that cause significant changes in the kernel.
However, they are the major differences and are representative of
the effort involved in porting the OpenVMS system to the Alpha AXP
architecture.

For the most part, it was possible to isolate architecture-dependent
changes to a few major subsystems. However, differences in the memory
reference architecture had a pervasive impact on users of shared data and
many common synchronization techniques. Other differences such as those
related to memory management, context switching, or access to I/O devices
were confined mostly to the relevant subsystems.

Effects of Architectural Differences in Memory Subsystems

The following differences between the VAX and Alpha AXP memory reference
architectures affected synchronization:[1,3]

o  Load/store architecture rather than atomic modify instructions

o  Longword and quadword writes with no byte write instructions

o  Read/write ordering not guaranteed

Load/store memory reference instructions are characteristic of most RISC
designs. However, the other differences are less typical. The reasons for
all three differences were hardware simplification and opportunities
for increased hardware performance.[1] These differences result in
significant changes in system software and in many opportunities for subtle
errors, which can be detected only under heavy load. Adapting to these
architectural changes without greatly impacting performance was one of the
major challenges that faced the group in porting the OpenVMS system to the
Alpha AXP architecture.

A load/store architecture such as Alpha AXP cannot provide the atomic
read-modify-write instructions present in the VAX architecture. Thus,
instruction sequences are necessary for many operations performed by a
single, atomic VAX instruction, such as incrementing a memory location. The
consequence is a need for increased awareness of synchronization. Instead
of depending on hardware to prevent interference between multiple threads
of execution on a single processor, explicit software synchronization may
be required. Without this synchronization, the interleaving of independent
load-modify-store sequences to a single memory location may result in
overwritten stores and other incorrect results.



The lack of byte writes imposes additional synchronization burdens on
software. Unlike VAX and most RISC systems, an Alpha AXP system has
instructions to write only longwords and 64-bit quadwords, not bytes
or words. Thus to write bytes, the software must include a sequence of
instructions that reads the encompassing longword, merges in the byte, and
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writes the longword to memory. As a consequence, software must be concerned
not only with shared access to the same memory cell by multiple threads,
but also with access to independent but adjacent variables. Synchronization
awareness is now extended from shared data to data items that are merely
near each other.

The OpenVMS AXP operating system group avoided the above-mentioned problems
introduced by the architectural changes in one of three ways:

o  Explicit software synchronization was added between threads.

o  Data items were relocated to aligned longwords or quadwords.

o  Alpha AXP load locked and store conditional instructions were used.

The obvious solution of adding explicit synchronization in the form of a
software lock is not always appropriate for several reasons. First, the
problem may be independent data items that happen to share a longword.
Synchronizing this sort of access in unrelated code paths is prone to
error. Explicit synchronization may also have an unacceptable performance
impact. Finally, deadlocks are a possibility if one thread interrupts
another.

Ensuring that data items are in aligned longwords or quadwords both
improves performance and eliminates interactions between unrelated data.
This technique is used wherever possible but cannot be used in two major
cases. One case occurs when the replication factor is too large. Expanding
an array of thousands of bytes to longwords may simply not be acceptable.
The other major problem case is data structures that cannot be changed
because of external constraints. For example, data may represent a protocol
message or a structure primarily resident on disk. Separate internal and
external forms of such data structures could exist, but the performance
cost of continuous conversions may not be acceptable.

Often the easiest and highest-performance way to solve synchronization
problems is to use sequences of load locked and store conditional
instructions. The load locked instruction loads an aligned longword
or quadword while setting a hardware flag that indicates the physical
address that was loaded. The hardware flag is cleared if any other thread,
processor, or I/O device writes to the locked memory location. The store
conditional instruction stores an aligned longword or quadword if and only
if the hardware lock flag is still set. Otherwise, the store returns an
error indication without modifying the storage location. These instructions
allow the construction of atomic read-modify-write sequences to update any
datum that is contained within a single aligned quadword. These sequences
of instructions are significantly slower than normal loads and stores due
to the necessity of waiting for the write to reach a point in the memory



hierarchy where consistency can be guaranteed. In addition, their use
may inhibit many compiler optimizations because of restrictions on the
instructions between the load and store. Although faster than most other
synchronization methods, this mechanism should be used sparingly.
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The lack of guaranteed read/write ordering between multiple processors
is another complication for the programmer trying to achieve proper
synchronization. Although not visible on a single processor, this lack
of ordering means that one processor will not necessarily observe memory
operations in the order in which they were issued by another processor.
Thus, many obvious synchronization protocols will not work when writes to
the synchronization variable and to the data being protected are observed
to occur out of order. A memory barrier instruction is provided in the
architecture to ensure ordering. However, the negative impact of this
instruction on system performance requires that it be used only when
necessary.

As described in the previous section, we used various mechanisms to solve
the synchronization problems. Having multiple solutions allowed us to
choose the one with the least performance impact for each case. In some
cases, explicit synchronization was already in place due to multiprocessor
synchronization requirements. In other cases, we expanded data structures
at a cost of modest amounts of memory to avoid expensive synchronization
when referencing data.

Privileged Architecture Changes

Unlike the pervasive architectural changes described in the previous
section, the privileged architecture differences had a more limited impact.
The primary remaining areas of change are the new page table formats and
the details of process context switching. This section describes memory
management as a representative example. However, many limited changes still
amount to modifying virtually every source module in the OpenVMS kernel,
even if only to add compiler directives.

Memory Management. Not surprisingly, the memory management subsystem
required the most change when moving from the VAX to the Alpha AXP
architecture. Aside from the obvious 64-bit addressing capability, two
significant differences exist between the page table structures on the
VAX and the Alpha AXP architectures. First, Alpha AXP does not have an
architectural division between shared and process private address space.
Second, the Alpha AXP three-level page table structure shown in Figure 1
allows the sharing of arbitrary subtrees of the page table structure and
the efficient creation of large, sparse address spaces. In addition, future
Alpha AXP processors may have larger page sizes.

To meet our schedule goals, we decided initially to emulate the VAX
architecture's 32-bit address space as closely as possible. This decision
required creating a 2-gigabyte (GB) process private address region (i.e.,
VAX P0 and P1) and a 2GB shared address region (i.e., VAX S0 and S1) for
each process. This is easily accomplished by giving each process a private
level 1 page table (L1PT) that contains two entries for level 2 page tables



(L2PTs). One of these L2PTs is shared and implements the shared system
region, whereas the other is private and implements the process private
address regions. Although the smallest allowed page size of 8 kilobytes
(KB) results in an 8GB region for each level 2 page table, we use only 2GB
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of each region to keep within our 4GB 32-bit limit. As shown in Figure 1,
the L2PTs are chosen to place the base address of the shared system region
at FFFFFFFF80000000 (hexadecimal), the same as the sign-extended address of
the top half of the VAX architecture's 32-bit address space.

Although changes were extensive in the memory management subsystem, many
were not conceptually difficult. Once we dealt with the new page table
structure, most changes were merely for alternative page sizes, new page
table entry formats, and changes to associated data structures. We did
decide to keep the OpenVMS VAX concept of mapping process page tables as
a single array in shared system space for our initial implementation.
Although not viable in the long term due to the potentially huge size
of sparse process page tables, this decision minimized changes to code
that references process page tables. Having process page tables visible
in shared system space turned out to be a significant complication in
paging and in address space creation, but the schedule benefits derived
from avoiding changes to other subsystems were considered worthwhile. We
expect to change to a more general mechanism of self-mapping process page
tables in process space for a subsequent OpenVMS AXP release.

Retaining the VAX appearance of process page tables allowed us to meet
our goals of minimum change outside of the memory management subsystem.
Unprivileged code is unaffected by the memory management changes unless
it is sensitive to the new page size. Even privileged code is generally
unaffected unless it has knowledge of the length or format of PTEs.

Optimized Translation Buffer Use. Thus far, we may have given the
impression that architectural changes always create problems for software.
This was not universally true; some changes offered us opportunities for
significant gains. One such change was an Alpha AXP translation buffer
feature called granularity hints. TBs are key to performance on any
virtual memory system. Without them, it would be necessary to reference
main memory page tables to translate every virtual address to a physical
address. However, there never seems to be enough TB entries. The Alpha AXP
architecture allows a single TB entry to optionally map a virtually and
physically contiguous block of properly aligned pages, all with identical
protection attributes. These pages are marked for the hardware by a flag in
the PTE.

Given granularity hints, near-zero TB miss rates for the kernel became
attainable. To this end, we enhanced the kernel loading mechanisms to
create and use granularity hint regions.

The OpenVMS AXP kernel is made up of many separate images, each of which
contains several regions of memory with varying protections. For example,
there is read-only code, read-only data, and read-write data. Normally, a
kernel image is loaded virtually contiguously and relocated so that it can



execute at any address. To take advantage of granularity hints, kernel code
and data are loaded in pieces and relocated to execute from discontiguous
regions of memory. Only a very few TB entries are actually used to map the
entire nonpaged kernel, and the goal of near-zero TB misses was reached.
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The benefits of granularity hints became immediately obvious, and the
mechanism has since been expanded. Now, the OpenVMS AXP system also uses
the code region for user images and libraries. This feature extends the
benefits not only to images supplied by the OpenVMS system, but to customer
applications and layered products as well. Of course, usage of this feature
is only reasonable for images and libraries used so frequently that
the permanent allocation of physical memory is warranted. However, most
applications are likely to have such images, and the performance advantage
can be impressive.

I/O

Unlike the architectural changes, the new I/O architecture structures an
area that previously was rather uncontrolled. The project goal was to allow
more flexibility in defining hardware I/O systems while presenting software
with a consistent interface. These seem like contradictory aims, but both
must be met to build a range of competitive, high-performance hardware that
can be supported with a reasonable software effort.

The Alpha AXP architecture presents a number of differences and challenges
that impacted the OpenVMS AXP I/O system. These changes spanned areas from
longword granularity to device control and status register (CSR) access to
how adapters may be built.

CSR Access. A fundamental element of I/O is the access of CSRs. On VAX
systems, CSR access is accomplished as simply another memory reference that
is subject to a few restrictions. Alpha AXP systems present a variety of
CSR access models.

Early in the project, the concept of I/O mailboxes was developed as an
alternative CSR access model. The I/O mailbox is basically an aligned piece
of memory that describes the intended CSR access. Instead of referencing
CSRs by means of instructions, an I/O mailbox is constructed and used as
a command packet to an I/O processor. The mailbox solves three problems:
the mailbox allows access to an I/O address space larger than the address
space of the system; byte and word references may be specified; and the
system bus is simplified by not having to accommodate CSR references that
may stall the bus. As systems get faster, these bus stalls are increasingly
larger impediments to performance.

Mailboxes are the I/O access mechanism on some, but not all, systems. To
preserve investment in driver software, the OpenVMS AXP operating system
implemented a number of routines that allow all drivers to be coded as if
CSRs were accessed by a mailbox. Systems that do not support mailbox I/O
have routines that emulate the access. These routines provide insulation
from hardware implementation details at the cost of a slight performance
impact. Drivers may be written once and used on a number of differing



systems.

               Digital Technical Journal Vol. 4 No. 4 Special Issue 1992  9



 

 Porting OpenVMS from VAX to Alpha AXP

Read/Write Ordering. An I/O device is simply another processor, and
the sharing of data is a multiprocessing issue. Since the Alpha AXP
architecture does not provide strict read/write ordering, a number of rules
must be followed to prevent incorrect behavior. One of the easiest changes
is to use the memory barrier instructions to force ordering. Driver code
was modified to insert memory barriers where appropriate.

The devices and adapters must also follow these rules and enforce proper
ordering in their interactions with the host. An example is the requirement
that an interrupt also act like a memory barrier in providing ordering. In
addition, the device must ensure proper ordering for access to shared data
and direct memory access.

Kernel Processes. Another important way in which the Alpha AXP architecture
differs from the VAX architecture is the lack of an interrupt stack. On
VAX systems, the interrupt stack is a separate stack for system context.
With the new Alpha AXP design, any system code must use the kernel stack
of the current process. Therefore, a process kernel stack must be large
enough for the process and for any nested system activity. This burden is
unreasonable. A second problem is that the VAX I/O subsystem depends on
absolute stack control to implement threads. As a result, most of the I/O
code is in MACRO-32, which is a compiled language on the OpenVMS AXP system
that does not provide absolute stack control.

These facts resulted in the creation of a kernel threading package for
system code at elevated interrupt priority levels. This package, called
kernel processes, provides a set of routines that support a private
stack for any given thread of execution. The routines include support for
starting, terminating, suspending, and resuming a thread of execution.

The private stack is managed and preserved across the suspension with no
special measures on the part of the execution thread. Removing requirements
for absolute stack control will facilitate the introduction of high-level
languages into the I/O system.

4  Performance

As stated earlier, the main purpose of the project was to deliver the
performance advantages of RISC to OpenVMS applications. We adopted
several methods, including simulation, trace analysis, and a variety
of measurements, to track and improve operating system and application
performance. This section presents data on the performance of OpenVMS
services and on the SPEC Release 1 benchmark suite.[5] Note that all Alpha
AXP results are preliminary.
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Performance of OpenVMS Services

To evaluate the performance of the OpenVMS system, we used a set of tests
that measure the CPU processing time of a range of OpenVMS services.
These tests are neither exhaustive nor representative of any particular
workload. We use relative CPU speed (i.e., VAX CPU time divided by Alpha
AXP CPU time) as a metric to truly compare CPU performance. For I/O-related
services, a RAM disk was used to eliminate I/O latencies.

The tests were run on a VAX system and an Alpha AXP system that are the
same except for the CPU. Table 1 shows the configuration details of the
two systems. Figure 2 shows the distribution of the relative CPU speed for
the OpenVMS services measured. Most tests ran between 0.9 and 1.7 times
faster on the Alpha AXP system than on the VAX system. Table 2 contains the
results for a representative subset of the measured OpenVMS services.
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Application Performance

Applications vary in their use of operating system services. Most
applications spend the majority of their time performing application-
specific work and a small fraction of their time using operating system
services. For these applications, performance depends mainly on the
performance of hardware, compilers, and run-time libraries. We used the
SPEC Release 1 benchmarks as representative of such applications. Table
3 shows the details of the VAX and Alpha AXP systems on which the SPEC
Release 1 suite was run, and Table 4 contains the results. The SPECmark89
comparison shows that the OpenVMS AXP system outperforms the OpenVMS VAX
system by a factor of 3.59.

The performance of OpenVMS services and the SPECmark results are consistent
with other studies of how operating system primitives and SPECmark results
scale between CISC and RISC.[6] Overall, the results are very encouraging
for a first-version product in which redesigns were purposely limited to
meet an aggressive schedule.

5  Conclusions

Some OpenVMS VAX features such as symmetric multiprocessing and VMScluster
support were deferred from the first version of the OpenVMS AXP system.
Beyond this, we anticipate taking significant steps to better exploit the
hardware architecture, including evolving to a true 64-bit operating system
in a staged fashion. Also, detailed analysis of performance results shows
the need to alter internal designs to better match RISC architecture.
Finally, a gradual replacement of VAX MACRO-32 source with a high-level
language is essential to support a 64-bit virtual address space and is an
important element for increasing performance.

The OpenVMS AXP system clearly demonstrates the viability of making
dramatic changes in the fundamental assumptions of a mature operating
system while preserving the investment in software layered on the system.
The future challenge is to continue operating system evolution in order to
provide more capabilities to applications while maintaining that essential
level of compatibility.
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