
Support for 64-bit virtual addressing on the OpenVMS
Alpha operating system, version 7.0, has vastly increased
the amount of virtual address space available for applica-
tion use.1 At the same time, fully compatible support for
applications that use only 32-bit addresses (also called
pointers) has been preserved.

An application that mixes 32-bit and 64-bit pointer
sizes operates in a mixed pointer size environment.
Mixed pointer size applications were the design center
for the initial implementation of 64-bit support in the
OpenVMS operating system. This paper discusses
the reasons why mixing pointer sizes is expected to
be a common practice and describes the design of
operating system and language features that are pro-
vided to ease programming in this mixed pointer size
environment.

Reasons for Mixed Pointer Sizes

To use 64-bit address space, some simple applications
need only be recompiled for a uniform 64-bit pointer
size. For example, self-contained DEC C applications
that rely on only the C run-time library, without
using system services or other libraries, can take
this approach. Real-world applications are seldom this
clean-cut, however. In more complex applications,
where 64-bit address space is likely to be needed,
mixes of languages, dependencies on system interfaces
and other libraries, and reliance on third-party pack-
ages or libraries are common. These practices all lead
to the mixed pointer size environment in which appli-
cations continue to use some 32-bit addresses while
taking advantage of 64-bit virtual address space.

Applications that are likely to take advantage of
64-bit memory are those in which the declaration and
management of a large data set can be logically sepa-
rated from the rest of the program. This separation
does not need to be at the source file level. It can be
at a program flow level, indicating which internal and
external interfaces will be given 64-bit addresses to
work with.

The following sections explore the reasons for
mixing pointer sizes.

72 Digital Technical Journal Vol. 8 No. 2 1996

The OpenVMS Mixed
Pointer Size Environment

Thomas R. Benson
Karen L. Noel
Richard E. Peterson

A central goal in the implementation of 64-bit
addressing on the OpenVMS operating system
was to provide upward-compatible support for
applications that use the existing 32-bit address
space. Another guiding principle was that mixed
pointer sizes are likely to be the rule rather than
the exception for applications that use 64-bit
address space. These factors drove several key
design decisions in the OpenVMS Calling Stan-
dard and programming interfaces, the DEC C
language support, and the system services
support. For example, self-identifying 64-bit
descriptors were designed to ease development
when mixed pointer sizes are used. DEC C sup-
port makes it easy to mix pointer sizes and to
recompile for uniform 32- or 64-bit pointer sizes.
OpenVMS system services remain fully upward
compatible, with new services defined only
where required or to enhance the usability of the
huge 64-bit address space. This paper describes
the approaches taken to support the mixed
pointer size environment in these areas. The
issues and rationale behind these OpenVMS
and DEC C solutions are presented to encourage
others who provide library interfaces to use
a consistent programming interface approach.

address quietly becomes a 64-bit address. If the called
routine is not 64-bit capable, attempts to use the
address will fail.

Focus on Services Required for Large Data Sets Not
all system services could be changed to support 64-bit
addresses (i.e., promoted) in time for the first version
of the OpenVMS operating system to support 64-bit
addressing. With the mixed-pointer model in mind,
we focused on those services that were likely to be
required for large data sets. For example, to allow I/O
directly to and from high memory, it was essential that
the I/O queuing service, SYS$QIO, accept a 64-bit
buffer address. Conversely, the SYS$TRNLNM service
for translating a logical name did not need to be mod-
ified to accept 64-bit addresses. Its arguments include
a logical name, a table name, and a vector that contains
requests for information about the name. These are
small data elements that are unlikely to require 64-bit
addressing on their own. Of course, they may be part
of some larger structure that resides in 64-bit space.
In this case, they can easily be copied to or from 32-bit
addressable memory.

System services are discussed further in the section
OpenVMS System Services. The 32-bit address restric-
tion on certain system services again emphasizes the
importance of being able to logically separate large
data set support from the rest of an application.

Limited Language Support Another interface point
that requires care when using 64-bit addressing is at
calls between modules written in different program-
ming languages. The OpenVMS Calling Standard
traditionally makes it easy to mix languages in an appli-
cation, but DEC C is the only high-level language
to fully support 64-bit addresses in the first 64-bit-
capable version of the OpenVMS operating system.2

The use of 64-bit addresses in mixed-language
applications is possible, and data that contains 64-bit
addresses may even be shared; however, references
that actually use the data pointed to by these addresses
need to be limited to DEC C code or assembly lan-
guage. Mixed high-level language applications are cer-
tain to be mixed pointer size applications in this
version of the operating system.

Support for 32-bit Libraries
Many applications rely on library packages to provide
some aspect of their functionality. Typical examples
include user interface packages, graphics libraries, and
database utilities. Third-party libraries may or may not
support 64-bit addresses. Applications that use these
libraries will probably mix 32-bit and 64-bit pointer
sizes and will therefore require an operating system
that supports mixed pointer sizes.

Digital Technical Journal Vol. 8 No. 2 1996 73

OpenVMS and Language Support
Implementation choices that Digital made for this first
release of the OpenVMS operating system that sup-
ports 64-bit virtual addressing will probably encour-
age mixed pointer size programming. These choices
were driven largely by the need for absolute upward
compatibility for existing programs and the goal of
supporting large, dynamic data sets as the primary
application for 64-bit addressing.

Dynamic Data Only OpenVMS services support
dynamic allocation of 64-bit address space. This mech-
anism most closely resembles the malloc and free func-
tions for allocating and deallocating dynamic storage
in the C programming language. Allocation of this
type differs from static and stack storage in that explicit
source statements are required to manage it. For static
and stack storage, the system is allocating the memory
on behalf of the application at image activation time.
(Of course, the allocation may be extended during
execution in the case of stack storage.) This allocation
continues to be from 32-bit addressable space.

Two special cases of static allocation are worth men-
tioning. Linkage sections, which are program sections
that contain routine linkage information, and code
sections, which contain the executable instructions,
do not differ substantially from preinitialized static
storage. As a result, these sections also reside only in
32-bit addressable memory.

Upward-compatibility Constraints The OpenVMS
Alpha operating system is cautious to avoid using
64-bit memory freely where it may prevent upward
compatibility for 32-bit applications. For example, the
linkage section might seem to be a natural candidate
for the OpenVMS system to allocate automatically in
64-bit memory. This allocation would essentially free
more 32-bit addressable memory for application use;
however, even if this were done only for applications
relinked for new versions of the OpenVMS operating
system, there is no guarantee that all object code treats
linkage section addresses as 64 bits in width. A simple
example is storing the address of a routine in a struc-
ture. Since a routine’s address is the address of its pro-
cedure descriptor in the linkage section, moving the
linkage section to 64-bit memory would cause code
that stores this address in a 32-bit cell to fail.

Allocating the user stack in 64-bit space also appears
to be a good opportunity to easily increase the amount
of memory available to an application. Stack addresses
are often more visible to application code than linkage
section addresses are. For instance, a routine can easily
allocate a local variable using temporary storage on the
stack and pass the address of the variable to another
routine. If the stack is moved to 64-bit space, this

Implications of Full 64-bit Conversion
For some applications, it may be desirable to mix
pointer sizes to avoid the side effects of universal 64-bit
address conversion. The approach of recompiling every-
thing with 64-bit address widths is sometimes called
“throwing the switch.” An obvious implication of
throwing the switch is that all pointer data doubles in
size. For complex linked data structures, this can be a
significant overall increase in size. Increasing the pointer
size may also reveal hidden dependencies on pointer size
being the same as integer size. If code accesses a cell as
both a 32-bit integer and a 32-bit pointer, the code will
no longer work if the pointer is enlarged. Thus,
universally increasing the pointer size may force changes
to code that would otherwise continue to work.

There is a more compelling reason for not throwing
the switch for code that is part of a shared library.
Library packages must not return 64-bit addresses to
users of the library unless the calling code is definitely
64-bit capable. If the library developer throws the
switch when building a library written in DEC C, all
memory returned by the malloc function will be in
64-bit address space. This can be a problem if the
address is blindly returned to a library caller. If a library
is to work in a mixed pointer size environment, and
it sometimes returns pointers to memory it has allo-
cated, it needs to use mixed pointer sizes internally.

Programming Interface Issues

The coexistence of 32-bit and 64-bit pointers raised
several design questions for operating system and lan-
guage support, particularly in the area of routine inter-
faces. When an application or library is being modified
to use 64-bit address space, argument passing may
be the most exposed area. In this section, we describe
how mixed pointer size support affects argument-
passing mechanisms and the design decisions made to
ease the coexistence of mixed pointer sizes.

Argument List Width
Even before the introduction of 64-bit addressing, the
OpenVMS Calling Standard defined argument list ele-
ments to be 64 bits in width. When passing a 32-bit
address (that is, when passing an item in 32-bit space
by reference), compilers sign extend the 32-bit value
into the 64-bit argument location.1 Passing 64-bit
addresses as values works transparently without chang-
ing the calling standard, assuming, of course, that the
called routine expects to receive 64-bit addresses.
Passing 32-bit addresses as values to routines that
expect 64-bit addresses works properly because the
values have been sign extended to a 64-bit width.

Pointers by Reference
Passing the addresses of pointers requires special care
when mixing pointer sizes. If the caller passes a 32-bit

74 Digital Technical Journal Vol. 8 No. 2 1996

address by reference, and the called routine reads it as
a 64-bit address from memory, the upper 32 bits will be
incorrect. Similarly, if the address of a 64-bit address is
passed, and the called routine reads only 32 bits from
memory, it will fail when that address is used.

This is the simplest case in which support of 64-bit
addresses may require a programming interface change
for 64-bit callers. A single entry point that receives
a pointer by reference cannot tell which size pointer
it has received. Some possible solutions include a new
alternate entry point for 64-bit-capable callers or a
new parameter indicating the size of the address.

Pointers Embedded in Structures
Pointers passed by reference are a special case of the
more general problem of passing structures that con-
tain pointers. Again, the caller and called routine must
agree on the size of the pointers contained in the
structure. This case offers an option that may not
require a new programming interface, however. If the
structure is self-identifying, the routine may be able to
tell which form of the structure it has received and dis-
patch to appropriate code for the corresponding
pointer length.

Function Return Values
Function return values are also defined to be 64 bits in
width, so no calling standard change was required to
support 64-bit pointer returns. It is important that a
64-bit address not be returned blindly, though, unless
it is known that the caller is 64-bit capable. Typically,
this is a problem for library support routines rather
than for those within an application. A library routine
should return a 64-bit address only if the routine has
been specifically developed for a 64-bit environment
or if it can tell with certainty, based on input parame-
ters received, that the caller is 64-bit capable.

Calling Standard Issues
The OpenVMS Calling Standard defines register usage
conventions, argument list locations, data structures,
and standard practices for making procedure calls that
operate correctly in a multilanguage and multi-
threaded environment. As mentioned earlier, this stan-
dard already defined argument list elements to be
64 bits in width; however, some key data structures
defined by the standard were based on 32-bit pointer
sizes. The goal of upward compatibility for existing
code complicated the job of extending the standard.
The following sections describe how the structures
were ultimately changed and illustrate some
approaches to supporting mixed pointer sizes when
shared structures contain pointers.

Descriptors Descriptors are structures defined by
the calling standard to specify an argument’s type,
length, and address, along with other type or

structure-specific information. Typically, descriptors
are used only for character strings, arrays, and complex
data types such as packed decimal.

Descriptor types are by definition self-identifying by
virtue of the type and class fields they contain. An
obvious choice, therefore, for extending descriptors to
handle 64-bit addresses would be to add new type
constants for 64-bit data elements and extend the
structure beyond the type fields to accommodate
larger addresses and sizes. In practice, however, the
address and length fields from descriptors are fre-
quently used without accessing the type fields, partic-
ularly when a character string descriptor is expected.

As a result, a solution was sought that would yield
a predictable failure, rather than incorrect results or
data corruption, when a 64-bit descriptor is received
by a routine that expects only the 32-bit form. The
final design includes a separate 64-bit descriptor layout
that contains two special fields at the same offsets as
the length and address fields in the 32-bit descriptor.
These fields are called MBO (must be one) and
MBMO (must be minus one), respectively. The sim-
plest versions of the 32-bit and 64-bit descriptors are
illustrated in Figure 1.

If a routine that expects a 32-bit descriptor receives
a 64-bit descriptor, it will find the value 1 in the length
field. This nonzero value ensures that the address will
need to be read. Otherwise, the descriptor could be
treated as describing a null value, and the address
would be ignored. In the address field, a 32-bit reader
will find the value 21. When the reader attempts to
reference this address, an access violation occurs,
because the OpenVMS operating system guarantees
this address to be inaccessible. This combination of
values ensures that an access will also fail if the length is
added to the address first, in an attempt to read the last
byte of data.

To distinguish the descriptor forms, a new routine
must check the MBO and MBMO fields for the
expected 64-bit descriptor values. In the OpenVMS
operating system, many routines now accept either
descriptor form.

Signal Arrays The signal array is a user-visible struc-
ture that is passed to condition handlers when an
exception occurs. The array contains message codes,
arguments specific to the conditions, and control data.
Because the arguments may include one or more vir-
tual addresses, a new format was necessary to accom-
modate 64-bit addresses.

The signal array could not simply be promoted to
contain 64-bit addresses, because handlers in existing
code often make assumptions about its format. The
mechanism array, a related structure containing a snap-
shot of register contents, was already 64 bits in width.

The solution was to leave the original form of the
signal array unchanged and create a 64-bit counter-
part. The items passed to a condition handler, the
32-bit signal array address, and a 64-bit mechanism
array address are the same. The mechanism array now
contains a pointer to the 64-bit version of the signal
array. This allows existing code to work without
change, while new handlers that may require access to
64-bit addresses in exceptions can obtain the 64-bit
array address from the mechanism array. Some addi-
tional work was needed in OpenVMS exception han-
dling to keep these two arrays synchronized, because
handlers are allowed to change their contents.

Sign-extension Checking
As described earlier, 32-bit addresses passed as routine
arguments are sign extended into 64-bit argument loca-
tions. A safeguard that can be used in 32-bit routines
that are not extended to fully support 64-bit addresses is
referred to as sign-extension checking of the argument
addresses. This checking consists of simply reading the
low 32 bits of the argument, sign extending this value to
a 64-bit width, and comparing the result to the full
64 bits of the argument. If the bits differ, the address is
not one that can be represented in 32 bits. The routine
can then return an error status of some kind, rather than
failing in some unpredictable way. Sign-extension
checking is a useful tool for ensuring robust interfaces in
the mixed pointer size environment.

DEC C Language Support for Mixed Pointer Sizes

To support application programming in the mixed
pointer size environment, some design work was
required in the DEC C compiler. This section
describes the rationale behind the final design.

It was clear that the compiler would have to provide
a way for 32-bit and 64-bit pointers to coexist in the
same regions of code. At the same time, customers and

Digital Technical Journal Vol. 8 No. 2 1996 75

CLASS DTYPE LENGTH

ADDRESS

SIMPLE 32-BIT DESCRIPTOR

: 0

 : 4

CLASS DTYPE MBO

MBMO

SIMPLE 64-BIT DESCRIPTOR

: 0

 : 4

LENGTH

ADDRESS

 : 8

 :16

BYTE
OFFSET

Figure 1
Simplest Versions of the 32-bit and 64-bit Descriptors

internal users initially favored a simple command line
switch when polled on potential compiler support
for 64-bit address space. (At least one C compiler that
supports 64-bit addressing, MIPSpro C, does so only
through command line switches for setting pointer
sizes.3) The motivation for using switches was to limit
the source changes needed to take advantage of the
additional address space, especially when portability
to other platforms is desired. For cases in which mix-
ing pointer sizes was unavoidable, something more
flexible than a switch was needed.

Why Not __near and __far?
The most common suggestion for controlling individ-
ual pointer declarations was to adopt the __near and
__far type qualifier syntax used in the PC environment
in its transition from 16-bit to 32-bit addressing.4

While this idea has merit in that it has already been
used elsewhere in C compilers and is familiar to PC
software developers, we rejected this approach for the
following reasons:

■ The syntax is not standard.
■ The syntax requires source code edits at each decla-

ration to be affected.
■ The syntax has become largely obsolete even in the

PC domain with the acceptance of the flat 32-bit
address space model offered by modern 386-
minimum PC compilers and the Win32 program-
ming interface.

■ Because of the vast difference in scale in choosing
between 16-bit or 32-bit pointers on a PC as com-
pared to choosing between 32-bit or 64-bit pointers
on an Alpha system, there would be no porting ben-
efit in using the same keywords. No existing source
code base would be able to port to the OpenVMS
mixed pointer size environment more easily because
of the presence of __near and __far qualifiers.

Pragma Support
The Digital UNIX C compiler had previously defined
pragma preprocessing directives to control pointer
sizes for slightly different reasons than those described
for the OpenVMS system.5 By default, the Digital
UNIX operating system offers a pure 64-bit address-
ing model. In some circumstances, however, it is desir-
able to be able to represent pointers in 32 bits to
match externally imposed data layouts or, more rarely,
to reduce the amount of memory used in representing
pointer values. The Digital UNIX pointer_size prag-
mas work in conjunction with command line options
and linker/loader features that limit memory use and
map memory such that pointer values accessible to the
C program can always be represented in 32 bits.

Since compatibility with the Digital UNIX compiler
would have greater value if it met the needs of the
OpenVMS platform, we evaluated the pragma-based

approach and decided to adopt it, propagating any
necessary changes back to the UNIX platform to main-
tain compatibility. The decision to use pragmas to
control pointer size addressed the major deficiencies
of the __near and __far approach. In particular, the
pragma directive is specified by ISO/ANSI C in such
a way that using it does not compromise portability as
the use of additional keywords can, because unrecog-
nized pragmas are ignored. Furthermore, pragmas can
easily be specified to apply to a range of source code
rather than to an individual declaration. A number of
DEC C pragmas, including the pointer size controls
implemented on the UNIX system, provide the ability
to save and restore the state of the pragma. This makes
them convenient and safe to use to modify the pointer
size within a particular region of code without disturb-
ing the surrounding region. The state may easily be
saved before changing it at the beginning of the region
and then restored at the end.

Command Line Interaction
Pragmas fit in with the initial desire of prospective
users to have a simple command line switch to indicate
64 bits. As with several other pragmas, we defined a
command line qualifier (/pointer_size) to specify the
initial state of the pragma before any instances are
encountered in the text. Unlike other pragmas,
though, we also use the same command line qualifier
to enable or disable the action of the pragmas alto-
gether. In this way, a default compilation of source
code modified for 64-bit support behaves the same
way that it would on a system that did not offer 64-bit
support. That is, the pragmas are effectively ignored,
with only an informational message produced.

This behavior was adopted for consistency with the
Digital UNIX behavior and also to aid in the process of
adding optional 64-bit support to existing portable
32-bit source code that might be compiled for an
older system or with an older compiler. In this model,
a compilation of new source code using an old com-
mand line produces behavior that is equivalent to the
behavior produced using an older compiler or a com-
piler on another platform. With one notable excep-
tion, building an application that actually uses 64-bit
addressing requires changing the command line.

The exception to the rule that existing 32-bit build
procedures do not create 64-bit dependencies is a sec-
ond form of the pragma, named required_pointer_size.
This form contrasts with the form pointer_size in that it
is always active regardless of command line qualifiers;
otherwise, required_pointer_size and pointer_size are
identical. The intent of this second pragma is to sup-
port writing source code that specifies or interfaces to
services or libraries that can only work correctly with
64-bit pointers. An example of this code might be a
header file that contains declarations for both 64-bit
and 32-bit memory management services; the services

76 Digital Technical Journal Vol. 8 No. 2 1996

must always be defined to accept and return the
appropriate pointer size, regardless of the command
line qualifier used in the compilation.

Pragma Usage
The use of pragmas to control pointer sizes within a
range of source code fits well with the model of start-
ing with a working 32-bit application and extending it
to exploit 64-bit addressing with minimal source code
edits. Programming interface and data structure decla-
rations are typically packaged together in header files,
and the primary manipulators of those data structures
are often implemented together in modules.

One good approach for extending a 32-bit applica-
tion would be to start with an initial analysis of mem-
ory usage measurements. The purpose of this analysis
would be to produce a rough partitioning of routines
and data structures into two categories: “32-bit suffi-
cient” and “64-bit desirable.” Next, 64-bit pointer
pragmas could be used to enclose just the header files
and source modules that correspond to the routines
and data structures in the 64-bit-desirable category.
After recompilation, the next step would be to respond
to compiler diagnostics for pointer-type mismatches by
adding pragma regions to mark sections of the 64-bit
files as 32-bit and parts of the 32-bit files as 64-bit and
to carefully add type casts, where necessary. This opera-
tion is likely to iterate until the compilation is clean and
a debugging cycle has shown correctness. The end
result is an application that takes advantage of the
increased address space for the data structures that will
benefit from it.

A common approach to minimizing the spread of
pragmas throughout a program is to limit them to
typedefs in header files. Then, subsequent uses of the
defined type do not require the pragma. A simple
example appears in Figure 2.

This example defines a type called char_ptr64,
which may be used to declare 64-bit pointers to char-
acter data without the use of pragmas. Of course, indi-
vidual pointers within structure types may also be set
to 64-bit or 32-bit sizes.

Secondary Effects
With the decision made to use pragmas and the basic
semantics of how the pragmas take effect established
by the Digital UNIX implementation, we needed to
consider additional requirements and issues that

might be specific to the OpenVMS implementation.
Two major differences between the platforms are

1. On the Digital UNIX system, the linker/loader
options used with mixed pointer size compilations
ensure that any address value obtained by the pro-
gram can be represented using 32 bits, whereas on
the OpenVMS system, any program using 64-bit
pointers in C will almost certainly encounter address
values that cannot be represented in 32 bits.

2. On the Digital UNIX system, the scope of the use
of mixed pointer sizes was expected to be quite
small and not likely to grow much over time,
whereas on the OpenVMS system, the scope is
expected to be somewhat larger at first and grow
significantly over time.

These two differences emphasized the need for effec-
tive compile-time diagnostics, debugging aids, envi-
ronmental support, and clear documentation.

Diagnostics As an aid to finding bugs resulting from
improper mixing of pointer sizes, the DEC C compiler
provides two kinds of diagnostics. Compile-time warn-
ings are issued for assignments from long pointers to
short pointers because of the possibility of data loss. In
addition, users may enable run-time checking for
pointer truncation through a command line qualifier.
This option causes the compiler to generate code on
each conversion from a long to a short pointer, which
will signal a range-check error if data truncation occurs.

Run-time checking is particularly useful in code that
sometimes employs type casting to use long pointers
in short pointer contexts. Since this action prevents a
compile-time warning about using a long pointer
where a short pointer is expected, a run-time check
may be the only way to discover a coding error. The
run-time check qualifier provides options distinguish-
ing this case from checking on general assignments
and parameter passing, allowing users to select for
which classes of pointer-size mixing the compiler
should generate checking code. Run-time checking is
also available for parameters received by a routine.
This allows detection of 64-bit addresses passed to
routines that expect 32-bit parameters even when the
caller is separately compiled or written in a different
programming language. For performance reasons, it is
usually desirable to remove all run-time checking once
a program is debugged.

Digital Technical Journal Vol. 8 No. 2 1996 77

Figure 2
Sample Header File Code That Limits Pragmas to Defined Types

#pragma required_pointer_size save /* Save the previous pointer size */
#pragma required_pointer_size 64 /* Set pointer size to 64 bits */
typedef char * char_ptr64; /* Define a 64-bit char pointer */
#pragma required_pointer_size restore /* Restore the pointer size */

Allocation Function Mapping The command line
qualifier setting the default pointer size has an addi-
tional effect that simplifies the use of 64-bit address
space. If an explicit pointer size is specified on the
command line, the malloc function is mapped to a
routine specific to the address space for that size. For
example, _malloc64 is used for malloc when the
default pointer size is 64 bits. This allows allocation
of 64-bit address space without additional source
changes. The source code may also call the size-
specific versions of run-time routines explicitly, when
compiled for mixed pointer sizes. These size-specific
functions are available, however, only when the
/pointer_size command line qualifier is used. See
“Adding 64-bit Pointer Support to a 32-bit Run-time
Library” in this issue for a discussion of other effects of
64-bit addressing on the C run-time library.6

Header File Semantics The treatment of pointer_size
pragmas in and around header files (i.e., any source
included by the #include preprocessing directive)
deserves special mention. Programs typically include
both private definition files and public or system-specific
header files. In the latter case, it may not be desirable for
definitions within the header files to be affected by the
pointer_size pragmas or command line currently in
effect. To prevent these definitions from being affected,
the DEC C compiler searches for special prologue and
epilogue header files when a #include directive is
processed. These files may be used to establish a par-
ticular state for environmental pragmas, such as
pointer_size, for all header files in the directory. This
eliminates the need to modify either the individual
header files or the source code that includes them.

The compiler creates a predefined macro called
__INITIAL_POINTER_SIZE to indicate the initial
pointer size as specified on the command line. This may
be of particular use in header files to determine what
pointer size should be used, if mixed pointer size sup-
port is desirable. Conditional compilation based on this
macro’s definition state can be used to set or override
pointer size or to detect compilation by an older com-
piler lacking pointer-size support. If its value is zero, no
/pointer_size qualifier was specified, which means that
pointer_size pragmas do not take effect. If its value is
32 or 64, pointer_size pragmas do take effect, so it can
be assumed that mixed pointer sizes are in use.

Code Example
In the simple code example shown in Figure 3, sup-
pose that the routine proc1 is part of a library that has
been only partially promoted to use 64-bit addresses.
This function may receive either a 32-bit address or a
64-bit address in the argument_ptr parameter. To
demonstrate the use of the new DEC C features, proc1
has been modified to copy this character string para-
meter from 64-bit space to 32-bit space when neces-

78 Digital Technical Journal Vol. 8 No. 2 1996

sary, so that routines that proc1 subsequently calls
need to deal with only 32-bit addresses.

The __INITIAL_POINTER_SIZE macro is used to
determine if pointer_size pragmas will be effective
and, hence, whether argument_ptr might be 64 bits in
width. If it might be a 64-bit pointer, whose actual
width is unknown in this example, the pointer’s value
is copied to a 32-bit-wide pointer. The pointer_size
pragma is used to change the current pointer size to
32 bits to declare the temporary pointer. Next, the
two pointer values are compared to determine if
the original pointer fits in 32 bits. If the pointer does
not fit, temporary storage in 32-bit addressable space
is allocated, and the argument is copied there. Note
that the example uses _malloc32 rather than malloc,
because malloc would allocate 64-bit address space
if the initial pointer size was 64 bits. At the end of
the routine, the temporary space is freed, if necessary.

A type cast is used in the assignment from
argument_ptr to temp_short_ptr, even though both
variables are of type char *. Without this type cast, if
argument_ptr is a 64-bit-wide pointer, the DEC C
compiler would report a warning message because of
the potential data loss when assigning from a 64-bit to
a 32-bit pointer.

For other examples of pointer_size pragmas and the
use of the __INITIAL_POINTER_SIZE macro, see
Duane Smith’s paper on 64-bit pointer support in
run-time libraries.6

OpenVMS System Services

The OpenVMS operating system provides a suite of
services that perform a variety of basic operating sys-
tem functions.7 Design work was required to maxi-
mize the utility of these routines in the new mixed
pointer size environment. Issues that needed to be
addressed included the following, which are discussed
in subsequent sections:

■ Several services pass pointers by reference and,
hence, required an interface change.

■ Because of resource constraints, not all system ser-
vices could be promoted to handle 64-bit addresses
in the first version of the 64-bit-capable OpenVMS
operating system.

■ Since the services provide mixed levels of support, it
is important to indicate those that support 64-bit
addresses and those that do not.

■ Certain new services seemed desirable to improve
the usability of 64-bit address space.

Services That Are 64-bit Friendly
Services that can be promoted to support 64-bit
addresses without any interface change are called 64-bit
friendly. If a service receives an address by reference, the
service is typically not 64-bit friendly, and a separate

entry point is required to support 64-bit addresses. A
single routine cannot distinguish whether the address at
the specified location is 32 bits or 64 bits in width.

If a service does not receive or return an address by
reference, the service is usually 64-bit friendly. Even
descriptor arguments present no problem, because the
32-and 64-bit versions can be distinguished at run
time. The majority of services fall into this category.

The services that are not 64-bit friendly include
the entire suite of memory management system ser-
vices, since they access address ranges passed by refer-
ence. Other such services include those that receive
a 32-bit vector as an argument, which may include the
address of a pointer as an element. A good example
from this group is SYS$FAOL, which accepts a 32-bit
vector argument for formatted output. For all these
services, new interfaces were designed to accommo-
date 64-bit callers.

Promotion of Services
The OpenVMS project team explored the idea of pro-
moting all system services to support 64-bit addresses.
Since the majority of OpenVMS system service
routines are written in the MACRO-32 assembly lan-
guage or the Bliss-32 programming language, the
internals of the routines could not be promoted to
handle 64-bit addresses without modifications. We
could not take advantage of the throw-the-switch
approach, and we did not want to because many

pointers used internally in the OpenVMS operating
system remain at 32 bits.

We considered using 64-bit jacket routines to copy
64-bit arguments to the stack in 32-bit space, which
would then call the 32-bit internal routine to perform
the requested function. However, this approach would
fail for context arguments such as asynchronous system
trap (AST) routine parameters, where the address of
the argument is stored for subsequent use. This
approach would also prevent services from operating
on any true 64-bit addresses. It was clear that at least
some routines would have to be modified internally.

The idea of using jacket routines was ultimately
rejected for several reasons. First, the jackets would
need to be custom written to ensure correct parameter
semantics. There could not be a “common jacket”
that could have saved time and lowered risk. Second,
there would be an undesirable performance impact for
64-bit callers. Third, we decided that having a com-
plete 64-bit system service suite was not essential for
usable 64-bit support. We could define a subset that
would meet the needs of 64-bit address space users,
while lowering our risk and implementation costs.

The services selected for 64-bit support fall into
four categories.

1. Memory management services.
2. Performance-critical services. This group includes

services that are typically sensitive to the addition of

Digital Technical Journal Vol. 8 No. 2 1996 79

Figure 3
Code Example of Pointer_size Pragmas and the __INITIAL_POINTER_SIZE Macro

void proc1(char * argument_ptr)
{
#if __INITIAL_POINTER_SIZE != 0

#pragma pointer_size save
#pragma pointer_size 32
char * temp_short_ptr;
temp_short_ptr = (char *)argument_ptr;
if (temp_short_ptr != argument_ptr) {

temp_short_ptr = _malloc32(strlen(argument_ptr) + 1);
strcpy(temp_short_ptr,argument_ptr);
argument_ptr = temp_short_ptr;

}
else {

temp_short_ptr = 0;
}
#pragma pointer_size restore

#endif

/*
The actual body of proc1 is omitted. Assume that it calls
routines that operate on the data pointed to by argument_ptr
and that the routines are not yet prepared to handle 64-bit
addresses.

*/

#if __INITIAL_POINTER_SIZE != 0
if (temp_short_ptr != 0)

free(temp_short_ptr);
#endif
}

80 Digital Technical Journal Vol. 8 No. 2 1996

even a few cycles of execution time. Requiring that
a 64-bit address user do any additional work, such
as copying data to 32-bit space, is undesirable. An
example of this type of service is SYS$ENQ, which
is used for queuing lock requests.

3. Design center services. The primary design center
for 64-bit support was database applications.
Database architects and consultants were polled to
determine which services were most needed by
their products. Many of these services, for example
SYS$QIO for queuing I/O requests, were also in
the performance-critical set.

4. Other useful basic services. This set includes ser-
vices to ease the transition to 64 bits with minimal
change to program structure. For example, the
SYS$CMKRNL service accepts a routine address
and a vector of 32-bit arguments and invokes the
routine in kernel mode, passing those arguments.
Without a new 64-bit version of SYS$CMKRNL,
a caller could not pass a 64-bit address to the kernel
mode routine without changing the form of the
argument block, such as passing a structure that
SYS$CMKRNL would not interpret as a vector.

Several steps were taken to ease programming to
this subset implementation.

■ For all 64-bit services, all pointer arguments may
be in 64-bit space. Extending only individual argu-
ments for some services would have been confusing
and difficult to document.

■ The 64-bit-capable system services are clearly listed
in the OpenVMS documentation, and the docu-
mentation for individual services clearly calls out
their capabilities.7,8

■ For C programmers, the header file that defines
function prototypes for system services
(STARLET.H) defines the expected pointer size
for service arguments. This file can be used for
compile-time type checking for correct argument
pointer sizes.

■ A strict naming convention has been adhered to for
64-bit services. If a routine was 64-bit friendly, i.e.,
it required no interface change, its name was not
changed. If a new entry point was required
because, for example, an address is passed by refer-
ence, a “_64” suffix was added to the name to iden-
tify the new entry point.

■ Sign-extension checking is performed in routines
that do not accept 64-bit addresses.

Centralized Sign-extension Checking
For services that have not been promoted to accept
arguments in 64-bit space, centralized sign-extension
checking takes place. As described in the section Sign-
extension Checking, such checking prevents errors that

occur when a 64-bit address is erroneously passed to a
routine that uses only 32-bit addresses. This centralized
checking is part of the system service dispatcher, which
returns the error status SS$_ARG_GTR_32_BITS when
the error is discovered. Performing the checking at this
common point minimized the implementation effort,
while protecting sensitive inner mode services. No
changes were necessary to the modules that contain the
32-bit service code. The internal vector of services con-
tains a flag for each service indicating whether checking
should be done.

Naturally, it is best for mixed-size errors to be dis-
covered at compile time. The DEC C compiler issues a
warning message when a 64-bit pointer is used as a
parameter to a routine whose function prototype spec-
ifies that the parameter should be a 32-bit pointer.
Run-time sign-extension checking works for any lan-
guage, though, including MACRO-32.

This support can also be used to allow a run-time
decision to be made to copy data from 64-bit space
to 32-bit space. For example, a routine could call a
system service, passing along an address that it
had received as a parameter. If the service returns
SS$_ARG_GTR_32_BITS, the calling routine can
then copy the argument to the stack and retry the ser-
vice. In this way, the overhead of copying can be
avoided if copying is unnecessary. When the system
service is promoted to handle 64-bit addresses in a
future version of the OpenVMS operating system, no
change will be needed in this caller; the data copying
code will never be invoked. This approach may be
appropriate for a run-time library that needs to be fully
64-bit capable today on OpenVMS Alpha version 7.0,
if that library will not be rereleased for a future version
of the OpenVMS operating system.

Memory Management System Services
The OpenVMS memory management system ser-
vices are not 64-bit friendly because they pass 32-bit
input and output address arguments by reference.
This set of services includes SYS$EXPREG (expand
program/control region), SYS$MGBLSC (map global
section), SYS$CRMPSC (create and map section), and
SYS$PURGWS (purge working set), among others.

The guiding principle in promoting these services
was that the new 64-bit services had to perform the
same functions as their 32-bit counterparts but not
necessarily with an identical interface. Since 32-bit
addresses can be expressed as 64-bit addresses with
sign-extension bits in the upper 32 bits, it made sense to
accommodate 32-bit addresses in the 64-bit interfaces,
making the new services a superset of the 32-bit forms.
For example, the SYS$CRMPSC service was split into
multiple 64-bit-capable services, because it handles a
variety of types of sections. The new services can operate
on either 32-bit or 64-bit addresses and have simpler

interfaces than the 32-bit-only SYS$CRMPSC. The
original SYS$CRMPSC is still present so that existing
code may function without change.

Some new feature requests were considered as part
of the 64-bit effort, but, to maintain the focus of
the release, these features were not implemented. The
64-bit memory management services were designed
to more easily accommodate new features in the
future. For example, the new services check the argu-
ment count for both too many and too few supplied
arguments. In this way, new optional arguments can
be added later to the end of the list without jeopardiz-
ing backward compatibility.

Virtual Regions
One new feature that was added to the suite of 64-bit
memory management services is support for new enti-
ties called virtual regions. A virtual region is an address
range that is reserved by a program for future dynamic
allocation requests. The region is similar in concept to
the program region (P0) and the control region (P1),
which have long existed on the OpenVMS operating
system.9 A virtual region differs from the program and
control regions in that it may be defined by the user by
calling a system service and may exist within P0, P1, or
the new 64-bit addressable process-private space, P2.1

When a virtual region is created, a handle is returned
that is subsequently used to identify the region in
memory management requests.

Address space within virtual regions is allocated in
the same manner as in the default P0, P1, and P2
regions, with allocation defined to expand space
toward either ascending or descending addresses. As
in the default regions, allocation is in multiples of
pages. The OpenVMS operating system keeps track of
the first free virtual address within the region. A region
can be created such that address space is created auto-
matically when a virtual reference is made within the
region, just as the control region in P1 space expands
automatically to accommodate user stack expansion.
When a virtual region is created within P0, P1, or P2,
the remainder of that containing region decreases in
size so that it does not overlap with the virtual region.

Virtual regions were added to the OpenVMS Alpha
operating system along with the 64-bit addressing
capability so that the huge expanse of 64-bit address
space could be more easily managed. If a subsystem
requires a large portion of virtually contiguous address
space, the space can be reserved within P2 with little
overhead. Other subsystems within the application
cannot inadvertently interfere with the contiguity
of this address space. They may create their own
regions or create address space within one of the
default regions.

Another advantage of using virtual regions is that
they are the most efficient way to manage sparse
address space within the 64-bit P2 space. Further-

Digital Technical Journal Vol. 8 No. 2 1996 81

more, no quotas are charged for the creation of a vir-
tual region. The internal storage for the description
of the region comes from process address space, which
is the only resource used.

Summary

This paper presents the reasons behind the new
OpenVMS mixed pointer size environment and the
support added to allow programming within this envi-
ronment. The discussion touches on some of the new
support designed to simplify the use of the 64-bit
address space.

The approaches discussed yielded full upward com-
patibility for 32-bit applications, while allowing other
applications access to the huge 64-bit address space for
data sets that require it. Promotion of all pointers to
64-bit width is not required to use 64-bit space; the
mixed pointer size environment was considered para-
mount in all design decisions. A case study of adding
64-bit support to the C run-time library also appears
in this issue of the Journal.6

Acknowledgments

The authors wish to thank the other members of the
64-bit Alpha-L Team who helped shape many of the
ideas presented in this paper: Mark Arsenault, Gary
Barton, Barbara Benton, Ron Brender, Ken Cowan,
Mark Davis, Mike Harvey, Lon Hilde, Duane Smith,
Cheryl Stocks, Lenny Szubowicz, and Ed Vogel.

References

1. M. Harvey and L. Szubowicz, “Extending OpenVMS
for 64-bit Addressable Virtual Memory,” Digital
Technical Journal, vol. 8, no. 2 (1996, this issue):
57–71.

2. OpenVMS Calling Standard (Maynard, Mass.: Digital
Equipment Corporation, Order No. AA-QSBBA-TE,
1995).

3. MIPSpro 64-Bit Porting and Transition Guide,Docu-
ment No. 007-2391-002 (Mountain View, Calif.:
Silicon Graphics, Inc., 1996).

4. C Language Reference for MS-DOS and Windows
Operating Systems (Redmond, Wash.: Microsoft Cor-
poration, 1991) and “Declarations and Types,” chap. 3,
and “Expressions and Assignments,” chap. 4, in
Microsoft C/C++ Version 7.0 (Redmond, Wash.:
Microsoft Corporation, 1991).

5. Digital UNIX Programmer’s Guide (Maynard, Mass.:
Digital Equipment Corporation, 1996).

6. D. Smith, “Adding 64-bit Pointer Support to a 32-bit
Run-time Library,” Digital Technical Journal, vol. 8,
no. 2 (1996, this issue): 83–95.

82 Digital Technical Journal Vol. 8 No. 2 1996

7. OpenVMS System Services Reference Manual:
A-GETMSG (Maynard, Mass.: Digital Equipment
Corporation, Order No. AA-QSBMA-TE, 1995) and
OpenVMS System Services Reference Manual:
GETQUI-Z (Maynard, Mass.: Digital Equipment Corpo-
ration, Order No. AA-QSBN-TE, 1995).

8. OpenVMS Alpha Guide to 64-Bit Addressing (May-
nard, Mass.: Digital Equipment Corporation, Order
No. AA-QSBCA-TE, 1995).

9. T. Leonard, ed., VAX Architecture Reference Manual
(Bedford, Mass.: Digital Press, 1987).

Biographies

Thomas R. Benson
A consulting engineer in the OpenVMS Engineering Group,
Tom Benson is one of the developers of 64-bit addressing
support. Tom joined Digital’s VAX Basic project in 1979
after receiving B.S. and M.S. degrees in computer science
from Syracuse University. After working on an optimizing
compiler shell used by several VAX compilers, he joined
the VMS Group where he led the VMS DECwindows
FileView and Session Manager projects, and brought the
Xlib graphics library to the VMS operating system. Tom
holds three patents on the design of the VAX MACRO-32
compiler for Alpha and recently applied for two patents
related to 64-bit addressing work.

Karen L. Noel
A principal engineer in the OpenVMS Engineering Group,
Karen Noel is one of the developers of 64-bit addressing
support. After receiving a B.S. in computer science from
Cornell University in 1985, Karen joined Digital’s RSX
Development Group. In 1990, she joined the VMS Group
and ported several parts of the VMS kernel from the VAX
platform to the Alpha platform. As one of the principal
designers of OpenVMS Alpha 64-bit addressing support,
she has recently applied for six software patents.

Richard E. Peterson
Rich Peterson joined Digital’s DEC C/C++ team in 1992.
He was the project leader for the development of the C
and C++ compilers that joined the Microsoft front ends
to the GEM back end. These compilers were used to build
and deliver the first release of the Windows NT operating
system on the Alpha platform and later were used in Visual
C++ for Alpha. A principal software engineer in the Core
Technologies Group, Rich is currently the project leader
for DEC C on the Digital UNIX and OpenVMS platforms.
Prior to joining Digital, Rich worked at Intermetrics on
a number of compiler projects, including HAL/S for the
Space Shuttle and Ada for IBM/370 and MIL-STD 1750A.
Rich also worked at COMPASS, where he was the project
leader for the Thinking Machines Fortran compiler and
Digital’s initial MPP compiler effort. He received a B.S.
in English from the California Institute of Technology
and has applied for one patent on Alpha OpenVMS 64-bit
compiler work.

