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1 Introduction 

Broadly speaking, the study of cognitive systems can be pursued for purposes of science or for 
purposes of engineering. Although this is a very coarse division, it can be useful to distinguish 
between these two purposes. A scientific study will seek to establish novel and falsifiable 
statements about naturally-occurring cognitive systems (or perhaps about the abstract space of 
possible naturally-occurring cognitive systems), while an engineering approach seeks simply to 
create artificial systems that reliably exhibit some desired level of cognitive performance or 
behaviour. Of course, the two approaches are not mutually exclusive, and in principle each can 
inform the other.  

As all known naturally-occurring cognitive systems are biological in origin, scientific studies of 
cognitive systems ignore biological data at their peril; but for engineering there is no a priori 
requirement to pay attention to biology. The majority of research directed at the engineering 
approach to creating cognitive systems was conducted under the banner of artificial intelligence, a 
field strongly (but not uniquely) identified with computer science. For much of its history, 
artificial intelligence (AI) research largely ignored biology. From the outset (commonly identified 
as the 1956 Dartmouth Conference on AI: McCarthy et al., 1955), up until the mid-1980’s, the focus 
within AI research was almost exclusively on treating cognition as a process involving the 
manipulation of symbolic representations of facts or knowledge, using techniques inspired by 
mathematical logic and/or computer programming languages. The dominant view was that the 
job of sensory systems (such as vision or hearing) was to deliver abstract symbolic representations 
(“models”) of the external world, which would then be reasoned about in order to determine an 
appropriate plan of action (e.g. Marr, 1982). Most studies of learning within AI were concerned 
with learning new ways to acquire, manipulate, relate, or classify symbolic representations of 
knowledge.  

This symbolic logic-based approach to AI eclipsed prior biologically inspired approaches, such as 
early studies in cybernetics that treated networks of neurons as logical devices (McCulloch & Pitts, 
1943), Rosenblatt’s (1959) Perceptron artificial neural network, and the automated learning work of 
Widrow & Hoff (1960). The demonstration of minimal biologically inspired architectures for 
mobile robot controllers can be traced back to the cybernetics research of Walter’s (1950) turtle 
robots and Ashby’s (1952) homeostat, and attempts at synthesizing life-life phenomena in 
mechanical automata can be traced back to the mid-1700s (for a historical review see Langton, 
1989).  

In the mid-1980’s a number of new approaches to the engineering of artificial cognitive systems 
emerged independently, but with a common theme of paying much more attention to biology. 
This was a sharp contrast to traditional symbolic logic-based AI, which (at best) treated issues of 
biological plausibility as irrelevant “implementation details”. These new approaches included the 
renaissance of “sub-symbolic” artificial neural networks and parallel distributed processing (PDP) 
architectures, inspired by the nervous systems of animals; the development of “behaviour-based” 
systems as an explicit rejection of the knowledge-based approach, inspired in part by studies in 
ethology and behavioural ecology; and the rapid growth of research interest in the field of artificial 
life, which seeks to engineer artificial systems that draw inspiration from a diverse range of 
naturally-occurring systems including developmental biology, the human immune system, 
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evolving gene-pools, and interacting groups of autonomous agents. These topics are explored in 
more depth later in this document.     

Common to all of these new approaches was the observation that many naturally-occurring 
systems, at one level of analysis, can be described as being built from components that are 
individually "simple" and that interact with each other in relatively "simple" ways; yet at another 
level of analysis these systems exhibit some "complex" overall behaviour that is not readily 
predictable from the individual components.  

Typically the complex overall behaviour is the result of compounded non-linearities in the 
component interactions. Furthermore, many systems of interest exhibit sophisticated adaptation 
responses over multiple timescales, and are resilient with respect to variations in component 
connectivity -- often as a result of self-organization properties. Almost all such naturally-occurring 
systems are biological in origin, and the phrase biologically-inspired complex adaptive systems 
(BICAS) has been used to generically refer to all such artificial systems.1   

The ultimate aim of BICAS research is to understand and build artificial complex adaptive systems 
with the same attractive properties of adaptation and resilience and self-organization as are found 
in naturally-occurring complex adaptive systems. The relevance of the BICAS approach to the 
science and engineering of cognitive systems is manifest.      

Some examples of naturally-occurring complex adaptive systems include:  

• An individual nerve-cell (a neuron) can be described at one level of analysis as a simple 
component that integrates electrical impulses received on its inputs and, if the sum of 
impulses received within some time-period is sufficiently high, which generates an output 
impulse. This sounds simple, yet if enough neurons are connected together in the right 
way, and if this tangle of neurons is exposed to the right environment for sufficiently long, 
then the end result could be an adult human brain capable of thinking, learning, and 
acting.  

• An individual animal can be viewed as a simple self-interested vehicle for propagating its 
genes: it just has to survive long enough to find a good mate and produce viable offspring, 
and its work is done. Yet over a sufficiently long period of time, random genetic variation 
combined with evolutionary processes such as Darwinian survival-of-the-fittest selection 
can create "designs" of animals that are exquisitely well-tailored to those animals’ 
environmental niches.  

• An individual trader in a marketplace can be viewed as a simple self-interested agent. 
Sellers try to trade at the highest price possible, while buyers try to trade at the lowest 
possible price. Yet, in the right conditions, this conflict between groups of traders acting 
out of naked self-interest can collectively form a market where transaction prices rapidly 
and repeatedly settle to an equilibrium price that represents the most efficient allocation of 
scarce resources, without the presence of a central coordinating or synchronising 
"auctioneer", despite dynamic variations in the underlying market supply and demand.      

                                                 
1 It should be noted that some complex systems of significant interest are non-biological: for example, simulated 
annealing (e.g., Aarts & Korst, 1988) is a computerised optimisation technique inspired by the cooling of molten solids.   
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As the last example makes clear, the interpretation of “naturally-occurring” extends to social 
systems (which are, at root, biological). In all three cases there are local small-scale components and 
interactions that are relatively well understood and predictable; which compound to create global 
large-scale system behaviours that are (hopefully) desirable, but generally hard to predict in 
advance from knowledge of the small-scale characteristics.  

A number of BICAS computing tools and techniques have been developed which have over the 
last 15 years (as a consequence of the dramatic falls in the real cost of processor power and 
memory and disk storage) shifted in status from academic curios to powerful methods used in 
critical industrial applications. Many BICAS techniques are directly applicable to the “bottom-up” 
engineering of artificial cognitive systems. Furthermore, the same falls in the real costs of 
computing have opened up the use of these BICAS tools and techniques for advanced computer 
modelling and simulation studies in the scientific understanding of natural cognitive systems. 
Thus, in contrast to the top-down knowledge-based AI approach, with this greater emphasis on 
biology comes a more realistic hope for genuinely productive interplay between the scientific and 
the engineering approaches in cognitive systems research. 
 
The scope for potential applications is very broad, and we will not attempt a comprehensive 
review in this document. One promising general BICAS application area is in the construction of 
artificial autonomous agents. Autonomous agents are entities that are capable of co-ordinating 
perception and action, for extended periods of time, and without human intervention, in the 
pursuit of some set of goals. Biological autonomous agents are better known as animals: their 
“goals” are generally to stay alive long enough to mate. Artificial autonomous agents are animal-
like artefacts: they may be physical mobile robots, or purely virtual entities. Autonomous mobile 
robots have many potential applications, from remote operation in hazardous environments, 
through to more mundane applications such as office cleaning or robotic toy “pets”.  Virtual 
agents might be used as simulations of real agents within real environments: for example to 
predict the behaviours of animals or people in certain circumstances, perhaps to scientifically 
evaluate some hypothesis; or they may be the product of an artist’s imagination, finding uses in 
computer games and animations.  Alternatively, virtual agents might sit in a “cyberspace” of 
electronic data, performing useful roles in business and industry (such as stock-market trading, 
controlling a manufacturing process, or as a plausible synthetic actor in an interactive education 
application). These (and other) applications may involve a single agent, or may involve groups of 
agents interacting either competitively or co-operatively.  In all application areas, there are 
indications that the traditional (“von Neuman”) computer architecture that has served so well for 
so long may well not be the most applicable for studying or creating biologically-inspired complex 
adaptive systems: some new alternative approaches appear to offer greater promise.  
 
Section 2 of this document surveys the background literature for BICAS approaches to the science 
and engineering of cognitive systems; and Section 3 discusses potential applications in more 
depth. 

- 5 - 



 

2 Background Literature 
 
As was stated above, the general aim of developing techniques for computer simulation of 
intelligent or adaptive behaviours, creating systems capable of perception, learning, or language 
use, has traditionally been the domain of artificial intelligence (AI) research, first established as a 
distinct field in the late 1950’s. In the latter half of the 1980’s, a number of distinct new (or revived) 
styles of research started to attract significant attention, all which placed significant emphasis on 
biological inspiration. These included artificial life, artificial neural networks, artificial 
autonomous agents, artificial evolution, and artificial biochemistries; these are the topics that are 
reviewed here.  
 
Section 2.1 gives a very brief indication of AI research prior to the mid-1980’s, then Section 2.2 
discusses artificial life. Following that, Sections 2.3, 2.4, 2.5, and 2.6 respectively discuss research in 
artificial neural networks, autonomous agents, artificial evolution, and artificial biochemistries. 
Each of these covers the historical background, core concepts, and gives pointers to further 
reading. Each of these sections reveals how metaphors and ideas from biological systems have 
influenced these computer science technologies. Finally in Section 2.7 we  
 

2.1 Prehistory 
 
Up until the mid-1980s, the vast majority of research in AI had concentrated on the development 
of computer systems that emulated or modelled high-level cognitive functions, often uniquely 
human functions such as language understanding and translation, forming representations of 
visual scenes suitable for generating linguistic descriptions from, or the application of degree-level 
knowledge in tasks such as mineral prospecting from geological data or diagnosing bacterial 
blood diseases from patient symptoms. 
 
Much of this research, and almost all undergraduate AI textbooks of the time (such as those by 
Nilsson (1982), Winston (1984), and Charniak & McDermott (1985)) were based on the premise 
that intelligence is fundamentally concerned with the representation and manipulation of ‘facts’ or 
‘knowledge’. The representations and manipulations are often rooted in mathematical logic (e.g., 
Hodges, 1977). For example, given a database containing the two facts: 
 

• ‘Jo is taller than Mary’  represented as tallerthan(jo,mary) 
and  

• ‘Mary is taller than Jane’ represented as tallerthan(mary,jane) 
 

along with this general rule involving three variables A, B, and C: 
 
• ‘if (tallerthan(A,B) and tallerthan(B,C)) then tallerthan(A,C) 
 

logic-based reasoning allows the new fact tallerthan(jo,jane) (i.e. ‘Jo is taller than Jane’) to 
be added to the database automatically. Symbol-manipulating and logic-based programming 

- 6 - 



languages such as LISP (Winston & Horn, 1980) and PROLOG (Clocksin & Mellish, 1984) were 
developed to facilitate the engineering of so-called “knowledge-based” or “rule-based” systems 
(e.g., Gonzalez & Dankel, 1993). 
 
This style of AI research is commonly referred to as symbolic AI, a name that stems from a paper 
by Newell & Simon (1976). There, they argued for “computer science as empirical inquiry”, using 
computer programs to test the Physical Symbol System Hypothesis. This hypothesis was essentially a 
formal and precise statement of the assumptions that had been widespread but implicit in prior AI 
research: that systems which manipulated symbolic representations of knowledge exhibited the 
necessary and sufficient conditions for the generation of intelligent activity. For a review of the 
development of AI, relative to the other cognitive sciences (i.e., psychology, neuroscience, 
anthropology, linguistics, and philosophy), up to the mid-1980’s, see Gardner (1985). 
 
Symbolic AI attracted some vociferous criticism, both on the grounds of philosophical objections 
(e.g., Searle, 1980; Dreyfus, 1979, 1981), and, as time progressed, on the grounds of a mismatch 
between ambitious promises and the actual results that came to pass (e.g., McDermott, 1981, 1987; 
Winograd & Flores, 1986; Leith, 1990). But research continued nonetheless. The premier journal in 
the field, Artificial Intelligence, continues to publish papers describing advances in symbolic search 
algorithms, or new developments in advanced logics for reasoning about time, uncertainties, 
monotonicities, and so on. However, little or any of this is of any consequence to the development 
of biologically-inspired approaches. Most work in AI prior to the mid-1980’s is largely of historical 
interest, and will be discussed no further. 
 

2.2 Artificial Life 
 
Artificial Life (or “A-Life”) emerged as a new scientific field in the late 1980’s. The first 
international workshop on A-Life, organised by Chris Langton, was held in September 1987, with 
the proceedings being published two years later (Langton, 1989b). Langton is widely 
acknowledged as the founder of the field, although he appears to have withdrawn from active 
research in recent years. The proceedings of that meeting commences with an introductory article 
that includes a historical review (Langton, 1989a), and concludes with an annotated bibliography 
of nearly 500 papers on prior research related to A-Life. Further international workshops (and, 
later, conferences) in this series were held biennially; the most recent being the meeting in Sydney 
in December 2002. In December 1991, the first biennial European Conference on Artificial Life 
(ECAL) was held in Paris: see Varela & Bourgine (1992). In 1993, MIT Press commenced 
publication of the international journal Artificial Life, the first three issues of which contained 
overview articles by members of the editorial board, giving their perspectives on past and current 
A-Life research. This collection of articles was subsequently published as a book (Langton, 1995). 
 
A-Life rapidly achieved a high media profile, helped by the publication of a very readable popular 
science book devoted to it (Levy, 1993), and by the general increased interest in the notion of 
studying “complexity”, such as that exhibited by natural “complex systems” including economies 
and other social structures, brains, immune systems, interacting genes, and evolving species. The 
interdisciplinary Santa Fe Institute in New Mexico, USA, where Langton and several other 
prominent early A-Life workers held research posts, is widely viewed as the premier institution 
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for the study of complex systems. For excellent popular accounts of the genesis of complexity 
research, see Waldrop (1993) and Coveney & Highfield (1995). 
 
Much work in A-Life concentrates on so-called emergent phenomena. This is a name that is given 
to complex but coherent global phenomena that arise from the interaction of many small 
constituents of a system, where the constituents are simple in relation to the global phenomena. 
Co-ordinated behaviors in groups of animals provide one example of emergence: flocks of birds, 
schools of fish, and herds of animals may all appear to move as a co-ordinated whole, while their 
behavior can be modelled (and perhaps explained) by each agent in the group following a small 
number of simple rules (e.g., Reynolds, 1987); the co-ordinated behavior of the group emerges from 
the interaction of these simple agent behaviors. As real systems are often too complex to allow 
analysis, many A-Life studies of emergent phenomena have concentrated on relatively simple 
formal systems such as one-dimensional cellular automata (e.g. Langton, 1991). See Forrest (1991) 
for a collection on emergent computation, a special issue of the journal Physica D reissued as a 
book. The journal Complex Systems has also acted as a forum for the publication of such research 
papers. 
 
Despite this rapid growth in research activity and the attendant media coverage, formulating a 
precise definition of the scope of A-Life research appears to have caused some difficulties. This is 
made clear by the following quote from Langton’s Editor’s Introduction in the first issue of the first 
volume of the Artificial Life journal:  
 

“The term artificial life literally means ‘life made by man rather than by nature’. As 
you will see, ‘artificial life’ means many things to many people, and I will not 
attempt to give a concise definition of it here, for in reality, artificial life is not yet 
ready to be constrained by quick and short definitions. Artificial life is still in the 
process of defining itself, as is proper for any new discipline. The articles in this 
initial volume carefully stake out claims to certain areas of study, but there is far 
more intellectual territory out there waiting to be discovered and laid claim to. 
Perhaps in ten years or so, we will be able to look back and provide brief and 
succinct characterizations of artificial life with the benefit of hindsight.” 
(Langton, 1993b, page v). 

 
This seems a curious statement. Six years after the first workshop, Langton was unwilling to 
attempt a definition of the field he founded, and suggested that it may take another decade before 
a definition could be arrived at.2 There is a worrying lack of precision here, which will be 
discussed further below.  
 
 
 
 

                                                 
2 That decade is now up. Looking at recent issues of the Artificial Life journal and the proceedings volumes of the recent 
A-Life and ECAL conferences, the range and nature of the topics studied do not appear to have changed significantly 
over the last ten years. If anything, the striking issue is the lack of additional “intellectual territory” laid claim to in the 
past decade. Encouragingly, the one topic-area showing growth is in papers reporting on technological applications of 
A-Life tools and techniques. 
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Certainly, Langton hedged less in his earlier writings, e.g.: 
 

“Artificial Life is the study of man-made systems that exhibit behaviors 
characteristic of natural living systems. It complements the traditional biological 
sciences concerned with the analysis of living organisms by attempting to synthesize 
life-like behaviors within computers and other artificial media. By extending the 
empirical foundation upon which biology is based beyond the carbon-chain life that 
has evolved on Earth, Artificial Life can contribute to theoretical biology by 
locating life-as-we-know-it within the larger picture of life-as-it-could-be.”  
(Langton, 1989a, p.1, original emphasis). 
… 
“Only when we are able to view life-as-we-know-it in the larger context of life-as-it-
could-be will we really understand the nature of the beast. Artificial Life … is a 
relatively new field employing a synthetic approach to the study of life-as-it-could-
be. It views life as a property of the organization of matter, rather than a property of 
the matter which is so organised.”  
(Langton, 1989a, p.2, original emphasis). 

 
 
Thus defined, A-Life research involves the study of synthetic systems that exhibit ‘life-like’ 
behaviors (Langton, 1989a, p.5). The synthetic systems could be physical hardware, computer 
software, or biological ‘wetware’ such as laboratory preparations of molecules or cell cultures. A-
Life research aims to study life-as-it-could-be, in order to advance our understanding of life-as-we-
know-it. Rather than viewing ‘life’ as a property peculiar to carbon-chain chemistry, life is viewed 
as a property of the organisation of matter, no matter what the matter may be. 
 
Under this view, it is possible that computer software agents, competing to survive and reproduce 
in some virtual environment, could be considered to be alive. In the late 1980’s, Thomas Ray (a 
professor of biology at the University of Delaware) argued forcefully that such software systems 
are not models or simulations of life on earth; rather, they are independent instances of life (Ray, 
1994). To further explore this possibility, Ray developed a system called Tierra, a simple virtual 
environment where primitive software ‘agents’ could replicate, compete for limited resources, and 
(potentially) evolve. In a landmark paper, Ray (1992) described how, by seeding the Tierra 
environment with a simple self-replicating agent, a rich evolutionary process with complex 
dynamics was unleashed, giving rise to diverse groups (or ‘species’) of agents, including species 
that were parasitic. 
 
Clearly, work such as Ray’s raises the philosophical question of “what is life?”. For Ray, an 
appropriately configured virtual environment is sufficient to sustain life. Other researchers have 
disagreed, but such disagreement is common at the leading edge of any scientific field. Papers by 
authors with varying positions on the philosophical issues raised by (and important to) A-Life 
were gathered in a collection edited by Boden (1996). Although at some point in the future there 
may be serious debate over the ethics of using synthetic living things in industrial applications (i.e. 
“animal rights” for synthetic animals), such questions are at present largely irrelevant to 
engineering uses of A-Life technologies. What matters is what they do, not whether they are alive. 
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The lack of precision in the definition of Artificial Life, and the emphasis in much A-Life research 
on abstract computational models of biological phenomena, have offered opportunities for 
criticisms of the field. Such criticisms have been further fuelled by the publication, in the 
proceedings of A-Life meetings, of papers that make extreme claims or predictions for the future 
of synthetic life-forms: see e.g., Moravec (1989) and Farmer & Belin (1992). An unsympathetic 
article published in Scientific American (Horgan, 1995) implied that much A-Life research bore little 
relevance to reality. Terms such as “eye-candy” (referring to the impressive, but possibly 
irrelevant, computer-graphic visualisations often produced to illustrate A-Life results),”fact-free 
science”, and “science-as-it-could-be” have been used by critics of the field. In a scholarly but 
somewhat damning paper, Miller (1995) forcefully argued that much A-Life research is poor-
quality science, being biology research performed by mathematicians and computer scientists with 
little understanding of past research in, or current working practices of, the biological sciences. In 
essence, Miller’s argument is that if the aim of A-Life is to further our understanding of biological 
systems, then it should really be considered as a sub-branch of theoretical biology, in which case 
there is no need for a separate field with its own conferences and journals, other than as an outlet 
for publishing low-quality papers that would not stand the rigorous assessment and selection 
criteria of the established biology publications. 
 
While proponents of A-Life would undoubtedly want to take issue with these criticisms, it seems 
undeniable that the lack of a precise definition of the field causes problems of focus. Definitions of 
the field based on the aim of replicating “life-like” phenomena in synthetic systems fall foul of the 
problem that almost any research in the life sciences, from molecular biology, through 
neuroscience and psychology, to evolutionary biology, population dynamics, and even social 
sciences such as economics and political science, can be viewed as studying “life-like” phenomena. 
Indeed, the logic-based theorem-proving of symbolic AI could be classed as “life-like” because 
theorem-proving is a phenomenon exhibited by humans, who are alive. For a more positive 
discussion of the A-Life roots of AI, see Steels (1993).  
 
However, this lack of focus can be viewed charitably. Just as an ‘umbrella group’ is formed by 
representatives of small parties or organisations to act for them all where they have common 
interests, so A-Life has often acted as an ‘umbrella term’ for a variety of research interests which 
have not yet received sufficient attention or followers to establish their own workshops, 
conferences, and journals. Despite the often-valid criticisms levelled at A-Life as a field, the journal 
and proceedings volumes have undoubtedly provided a valuable forum for the publication of 
research papers that cross traditional subject-boundaries and that would otherwise encounter 
difficulties if attempts were made to publish them in better-established but more traditional 
outlets. While it is true that some of the papers published in the A-Life literature are of dubious 
scientific merit, the majority of work is of a standard just as high as in other scientific disciplines. 
Indeed, no other scientific field is entirely free from the problem of bad work being published by 
careless or mendacious researchers.  
 
In the remaining subsections of this review, the literature on Artificial Neural Networks, 
Autonomous Agents, Artificial Evolution, and Artificial Biochemistries is examined. For the 
reasons just given, all of these could plausibly be considered as aspects of, or sub-fields within, 
Artificial Life. 
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2.3 Artificial Neural Networks 
 
Without doubt, one of the most significant publications in the cognitive science literature of the 
1980’s was the 1986 two-volume collection reviewing developments in Parallel Distributed 
Processing (PDP), edited by Rumelhart and McClelland (Rumelhart & McClelland, 1986;  
McClelland & Rumelhart, 1986). PDP involved the revival of an unusual style of computational 
architecture, inspired by biological neural networks, where the combined activity of many simple 
processing units operating in parallel could give rise to an overall behavior that could be 
interpreted as a complex computation. In more traditional models, the computation would have 
been effected by a sequential program running on a standard (von Neuman architecture) single-
processor computer. 
 
In typical PDP models each of the simple processing elements take as input some number of scalar 
numeric values, and applies a nonlinear mathematical function to those input values, one which 
provides a single scalar output value. The nonlinear function typically has a sigmoidal (‘S’-
shaped) relationship between input and output. For example, in a system with binary output 
values, if the sum of input values received is less than some threshold, an output value of zero 
would be given by a unit; otherwise, the output is one. The input values for a unit could come 
from the external word (i.e., sensors or other input devices) or from other units within the PDP 
system. Similarly, the output value of a unit could form part of the output of the overall system, or 
could form part of the input to one or more other units within the system. The output value of a 
unit would be passed to form the input value of another unit via a weighted connection: the 
weight on the connection determines the influence one unit’s output would have in deciding the 
output value of another unit; with differing connection weights, a particular single unit could have 
a large effect on some units while having only a small influence others. 
 
This emphasis on a connected network of units, where the connection-strengths determined the 
nature of the computation performed by the network, gave rise to an alternative name for PDP 
systems: they are also often referred to as connectionist systems. In contrast to symbolic AI systems, 
the ‘knowledge’ in a PDP system is ‘represented’ in the relative strengths of the connections 
between units: a concept referred to as distributed representation (Hinton, McClelland, & Rumelhart 
1986). A general mathematical framework for describing and analysing PDP systems was 
described by (Rumelhart, Hinton, and McClelland, 1986). 
 
Different PDP researchers had different motivations for studying such networks. One strong 
motivation was the then-nascent development of massively parallel computer architectures such 
as the Connection Machine (Hillis, 1985), which escaped the ‘von Neuman bottleneck’ of requiring 
all processing to be executed by a single central processing unit. Another attractive consideration 
was that many PDP systems exhibit so-called ‘graceful degradation’: if connections or units are 
deleted from the system, or noise is added to the inputs or the internal weights or signals, the 
performance of a PDP network may decline gradually. This is in preference to the system 
suffering catastrophic failures such as would be expected from, for example, deleting lines of code 
in a conventional sequential computer program. Furthermore, some PDP systems exhibit smooth 
continuous transitions between states that would otherwise be discrete states in a symbolic AI 
system: for instance, Rumelhart, Smolensky, McClelland, & Hinton (1986) demonstrated a PDP 
network that combined inputs representing ‘microfeatures’ of different types of rooms, such as the 
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presence of a bed, a desk, a refrigerator, etc, to smoothly vary between global states representing 
‘bedroom’ or ‘kitchen’ or ‘office’. While a symbolic AI system could easily have represented these 
states by predicates such as roomtype(room1,office) or roomtype(room2,kitchen), the 
PDP system was capable, via varying the combinations of input microfeatures, of passing through 
intermediate ‘emergent’ states that could be interpreted as analogues of ‘bed-sit’ or ‘study-
bedroom’, which had not been explicitly coded into the system. This was something that would 
have been much more difficult for a symbolic AI system to achieve.  
 
Finally, and perhaps most importantly, a number of mathematically rigorous automatic learning 
procedures had been developed, allowing the PDP systems to ‘learn from experience’ (Hinton, 
1992). The availability of learning algorithms was important, as typically it is laborious or difficult 
or impossible to determine by hand the desired settings for the weights of the connections 
between the units, and the value of each unit’s threshold. Learning algorithms allow networks to 
be initialised with random values for these parameters: subsequently, the learning algorithm 
changes the values of the weights and thresholds on the basis of results of a series of learning trials 
(‘experience’), tuning the values until a desired input-output mapping is produced by the 
network. In the machine learning literature, learning algorithms are commonly divided into three 
classes: supervised, reinforcement (or semi-supervised), and unsupervised. 
 
Supervised learning involves ‘training’ the system to replicate some given set of input-output 
mappings by presenting it with inputs taken from a pre-established training set of input-output 
pairs. Typically, each input-output pair will consist of a list of values to be supplied to the 
network’s input units (the input vector), and a list of desired values required on the output units 
(the target output vector). The actual output vector produced by the network for a given input 
vector is compared with the target output vector, and the network parameters are altered in such a 
way that next time the same input vector is presented, differences (errors) between the actual and 
desired output vectors will be reduced. The intention is that the network not only learns to 
replicate the data in the training set, but also that it generalises so that it can produce desired 
output vectors for input vectors that it has not previously been exposed to.  For this reason, it is 
also common to reserve a test set of input-output pairs, which the network is not exposed to 
during training. Once the network is performing well on the training set, its generalisation 
performance can be evaluated by recording its responses to the ‘unseen’ data in the test set. One of 
the simplest and most popular methods of supervised learning is the back-propagation algorithm 
(Rumelhart, Hinton, & Wilson, 1986; Werbos, 1994). 
 
The other two classes of learning algorithm, reinforcement and unsupervised, differ from 
supervised learning in the style of feedback. Rather than employ a unit-by-unit comparison of 
values in the actual and target output vectors, using each of the individual errors, reinforcement 
learning operates on the basis of a single value, the payoff, which may be thought of as a method of 
giving the network ‘reward’ or ‘punishment’; rigorous learning algorithms have been developed 
which attempt to maximise the expected future payoff received (e.g., Sutton & Barto, 1987; Sutton, 
1988; Watkins, 1989; Watkins & Dyan, 1992). In unsupervised learning, there is no desired output 
or feedback to the network: typically there is a competitive process within the learning network 
such that certain output units win the right to be active in the presence of certain input vectors 
(e.g., Rumelhart & Zipser, 1986; Barlow, 1989). Often, unsupervised learning algorithms have 
strong links to multivariate statistical techniques such as principal components analysis: for 
further discussion of a statistical perspective on learning in artificial neural networks, see White 
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(1989); and for a good overview of analytic multivariate statistical techniques, see Chatfield & 
Collins (1980). Artificial neural networks have proven extremely useful in the development of 
more sophisticated multivariate techniques, with Independent Component Analysis receiving 
significant attention (for reviews, see Hyvarinen et al., 2001; Stone, 2002). 
 
Whatever the style of learning, for a network with n numeric parameters (e.g., unit-thresholds and 
connection-weights), the learning problem can be thought of as a directed search in the n-
dimensional parameter space of thresholds and weights. At any one time, the parameters of the 
network have particular values, corresponding to a single point in that parameter space: after a 
single trial, if the learning algorithm adjusts some of the parameters, the network ‘moves’ to a new 
point in the parameter space. The result of a series of learning trials can thus be viewed as a 
trajectory through the n-dimensional parameter space, hopefully ending at a point where the 
parameter-values result in the network reproducing the desired input-output mapping. 
 
A complementary way of viewing the learning process is to observe the errors between the target 
output-vectors and the actual output-vectors of the network. At different points in the network 
parameter space, there will be different amounts of errors. Assume that, for a given point in the 
network’s parameter space, the errors for all the vector pairs in the training set can be summarised 
by a single number.3 Then each point in the parameter space has an associated error value, and so 
an error surface has been defined over the parameter space. The task of learning can then be viewed 
as one of gradient descent; trying to move to nearby (or local) points in parameter space that are at 
lower altitudes on the error surface (i.e., give output vectors that are closer to the target vectors in 
the training set). Many learning algorithms, including back-propagation, work by attempting to 
identify the direction from the current point in network parameter space where the error surface 
has the steepest negative gradient, and moving the network’s parameter-values in that direction. 
The learning algorithm thus directs the system toward a minimum in the error surface. If the error 
surface has zero height at the bottom of the minimum, the training set of input-output mappings 
is being replicated perfectly. Unfortunately, real error surfaces are often plagued by local minima: 
points on the error surface that are lower than all nearby points, but still too high to yield 
acceptable network performance. For many learning algorithms, much research has been directed 
at trying to identify when the system is trapped in a local minima, and specifying appropriate 
‘escape’ procedures (e.g., Hanson, 1991). 
 
In addition to the computational advantages offered by PDP systems, for many researchers a 
much stronger motivation is the similarity between PDP network architectures and the nervous 
systems of animals. Many PDP systems are referred to as “artificial neural networks”. The 
similarities are manifest: a typical nerve cell (or neuron) receives electrical stimulation from other 
neurons. This electrical simulation can (to a first approximation) be represented by a scalar 
numeric ‘input’ value: in the limit, a binary value can represent ‘stimulation’ or ‘no stimulation’. A 
neuron’s ‘output’, the electrical stimulation it provides to other cells, varies (typically in a 
nonlinear fashion) as a function of the ‘inputs’ received. Again, in the limit, a binary value could 
be used to distinguish between ‘stimulation’ and ‘no stimulation’. Neurons are typically classified 

                                                 
3 For example, in a system where the output vectors are of length k, the errors over the training set could be summarised 
by calculating the Euclidian (straight-line) distance in k-dimensional space between each actual output vector and its 
corresponding training output vector; and then calculating the root mean square of these distances for the entire training 
set to yield a single number. 
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as sensory neurons, as motor neurons, or as interneurons. An interneuron receives stimulation only 
from other neurons, and it only stimulates other neurons. This contrasts with sensory neurons, 
which produce ‘output’ electrical activity on the basis of stimulation from other physical 
phenomena, such as light, physical pressure, or chemical concentrations; and with motor neurons, 
the ‘output’ activity of which stimulates muscle cells to contract, producing physical forces. This 
has obvious similarities with the distinction made in artificial neural networks between ‘input 
units’, ‘output units’, and ‘hidden units’ (also referred to as ‘internal units’). 
 
In many cases, the researchers are careful to present their work as computational models of 
cognitive processes inspired by natural nervous systems, or using neuron-like processing units. This 
caution acknowledges that real neurons are much more subtle and complex objects than typical 
PDP processing elements. Moreover, in the period that PDP was becoming established, the 
continuing rapid decline in the real cost of computing power led to an increase in the use of 
computationally intensive techniques to model biological neural networks via simulation; an 
approach referred to as computational neuroscience (e.g., Sejnowski, Koch, & Churchland, 1988). 
Computational neuroscience spans a range of approaches, from complex mathematical models of 
the electrodynamics of patches of neuronal cell membranes, through simulations of small cell 
assemblies (e.g., less than ten neurons) with less detail in each simulated neuron, to models of 
networks involving large numbers of coarsely simulated neurons. MacGregor (1987) described 
such a range of models, with accompanying program code; while the collection edited by Koch & 
Segev (1989) spans a similar range, ending with a model by Lehky & Sejnowski (1988) that takes 
results from employing standard PDP back-propagation learning to cast new light on the 
interpretation of neuroscience results such as Hubel and Weisel’s Nobel-prize-winning work (e.g., 
Hubel, 1982, 1988). 
 
Within artificial neural network research there are many types of systems and approaches, 
varying in their organisational principles, in the types of neuron used, in the degree of biological 
realism, and so on. Many of the learning algorithms require particular styles of interconnection. 
For instance, the networks popularised by Hopfield (1984, 1985) require symmetric connection 
patterns, and back-propagation learning requires that networks are feed-forward, i.e. have no 
internal-feedback (or recurrent) connections; often such restrictions are necessary to simplify the 
mathematics of deriving a learning algorithm. Furthermore, in many cases the number of units in 
the network has to be determined in advance. This is significant because the number of internal 
units affects the number of input-output mappings that can be learnt by a network. If the network 
has insufficient internal units, it will fail to reproduce the desired input-output mapping; if there 
are too many internal units (in relation to the number of input-output pairs in the training set) the 
network can over-generalise, essentially compiling a ‘look-up table’ of what output to produce for 
each individual input, and so generalisation to the test data is poor in such cases. In principle, the 
number of units can be altered ‘virtually’: if the learning algorithm sets the weights on all 
connections into and out of a unit to zero, that unit ceases to have an effect on the network and so 
can be considered ‘deleted’; similarly if a unit with zero-valued weights on all inputs and outputs 
has its weight-values altered to non-zero values, it can be considered to have been ‘added’ to the 
network. Unfortunately, many learning algorithms give asymptotic weight change (i.e., the 
weights may approach zero but will never actually equal zero). For these reasons, some 
researchers developed constructive PDP learning algorithms that start with a small number of units 
(e.g., one), and gradually add extra units to achieve increases in performance (e.g., Fahlman & 
Lebiere, 1990). 
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In many applications, the network is constructed or trained to perform some task, but once in 
operation the learning process is suspended. There are two good reasons for this style of use. First, 
when in actual use, it is often no longer practicable to compare the network’s actual output with 
the desired output (e.g. the desired output may not be specified for all possible inputs). Second, 
continued training of the network using its real-usage ‘experiences’ as training data might bias the 
network to learn to respond to frequently occurring inputs, thereby ‘forgetting’ the appropriate 
responses to rare but important inputs that were present in the training set.  
 
One major problem with simple feed-forward networks is that they cannot maintain internal state: 
their current outputs are solely a function of their current input, and (once learning is complete) 
for any given input a particular network will always give the same output. Yet, in many practical 
applications, the same network may need to give different outputs for the same inputs, depending 
on the context of the network’s immediate circumstances and of its past experience. For this 
reason, there has been increased effort to develop techniques for training and analysing recurrent 
networks (i.e., those with internal-feedback connections). Methods for employing back-
propagation in simple recurrent networks were developed (e.g., Elman, 1990, 1993), as were 
constructive algorithms for recurrent networks (e.g., Fahlman, 1991). Of particular interest are so-
called continuous-time recurrent neural networks (CTRNNs). These are more general versions of 
the networks studied by Hopfield (1984,1985), and can be viewed as simplified versions of the 
classic neuron model developed by Hodgkin & Huxley (1952). Reasons for the interest in CTRNNs 
is summarised well by Beer: 
 

“In contrast to purely static feed-forward networks, which support only reactive 
behaviors, dynamical neural networks allow an agent to initiate action 
independent of its immediate situation and to organize its behavior in anticipation 
of future events… 
 
“CTRNNs are an obvious choice for this type of work because (1) they are 
arguably the simplest nonlinear, continuous dynamical neural network model; (2) 
despite their simplicity they are universal dynamics approximators in the sense 
that, for any finite interval of time, CTRNNs can approximate the trajectories of 
any smooth dynamical system [of a certain large class]…; and (3) they have a 
plausible neurobiological interpretation, where the [internal state of a unit] is often 
associated with a nerve cell’s mean membrane potential and the output … is 
associated with its short-term average firing frequency.” 
 
(Beer, 1995b, p.470). 

 
As Beer notes, many researchers interested in applying artificial evolution to neural networks 
(discussed further in Section 2.5) use CTRNNs. Because CTRNNs are capable of altering and 
maintaining internal state on the basis of inputs received, it is possible for them to exhibit 
‘learning’ without altering the strengths of connections. Successive alterations in input value can 
alter the internal state of the network, tracing a trajectory of points in state-space. Often, the state-
space trajectories traced out by the network will show regularities, such as convergence to 
attractors in state-space: either points, cyclic loops, or chaotic ‘strange attractors’.  Particular inputs 
or sequences of inputs may shift the state of the network from one attractor to another, in which 
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case the output behavior of the network might alter, and an external observer may want to say 
that the network appears to have ‘learned’ on the basis of the input(s) received. The roots of this 
approach lie in Hopfield’s (1984, 1985) work on symmetrically-connected CTRNNs as associative 
memories, and there is now a large body of work on so-called attractor networks. The analytical 
tools and techniques of dynamical systems theory (e.g., Baker & Gollub, 1990; Abraham & Shaw, 
1992) can be used to analyse such systems, to explain and predict their behavior. For discussion of 
(chaotic) dynamics in brain activity, see Skarda & Freeman (1987). Canavier et al. (1993) reported 
simulation studies in neurobiology which indicate that individual real neurons may have complex 
and perhaps chaotic dynamics. For demonstration of CTRNNs evolved to learn without weight 
change, see e.g. Yamauchi & Beer (1994), and for dynamical systems analysis of neural networks 
used to control robotic autonomous agents, see e.g. Husbands, Harvey & Cliff (1995) and Beer 
(1996). Gleick (1987) is a popular introduction to chaotic dynamics and strange attractors. 
 
Although there had been previous collections on similar topics (e.g., Hinton & Anderson, 1989), 
the papers in the Rumelhart and McClelland volumes presented the PDP approach as a mature 
body of work, and aroused significant excitement. Dreyfus & Dreyfus (1990) state that the two-
volume collection sold six thousand copies on the first day of its release in 1986, and had sold 
thirty thousand copies by 1988: these are outstanding sales-figures for a postgraduate-level 
academic text. McClelland, Rumelhart, & Hinton (1986) offer brief discussion of the historical 
background to the development of the PDP paradigm. The central notion of computing with 
neuron-style processing units can be traced back to McCulloch & Pitts’s (1943) seminal paper; and 
to the work of Rosenberg (1962), which attracted damning criticism in Minsky & Papert’s 1969 
book Perceptrons. The idea that learning in neural networks is the product of altering connection 
strengths was founded by the neuroscience work of Hebb (1949), who proposed that the strength 
of a connection between two neurons should be increased whenever the two neurons are 
simultaneously excited: a concept now referred to as Hebbian learning. Variations of the basic 
CTRNN model were studied first by Grossberg (1969, 1988). For reviews of the relationship 
between PDP-style models and symbolic models, see Smolensky (1988), Clark (1989) and Dreyfus 
& Dreyfus (1990). Reprints of a set of historically important research papers were collected by 
Anderson & Rosenfield (1988). The textbook by Hertz, Krogh, & Palmer (1991) gives a thorough 
grounding with an emphasis on mathematical analysis, while a working set of programs and 
models was published by McClelland & Rumelhart (1988). For the most comprehensive recent 
collection, of almost 300 articles spanning a range of topics from detailed biological modelling to 
practical engineering applications, preceded by excellent background tutorials and “roadmaps”, 
see Arbib (2003).  
 
As interest in PDP models and neural computation increased, a large number of international 
journals and international conference series were established. It could be argued that not all of 
these were necessary: a bandwagon had been set rolling, and it seemed in the late 1980’s that 
almost every publisher of academic journals announced at least one new PDP or neural network 
journal, and new conference series were being announced with a frequency that begged the 
question of where the international-quality research would come from to fill the pages made 
available for publication. By the early 1990’s there were too many publishing opportunities 
(conferences and journals) chasing too little good research; consequently, work of questionable 
future relevance could be published with relative ease. Nevertheless, much good work can be 
found. One journal widely regarded for its editorial standards and with a strong impact rating is 
Neural Computation, published by MIT Press since 1989; the Journal of Computational Neuroscience 
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and also Network have established reputations as quality publications for papers dealing with 
computational models of biological systems. In addition to the recently established journals, more 
long-standing journals such as Biological Cybernetics and Proceedings of The Royal Society of London 
Series B have a tradition of publishing archival quality work dealing with issues in PDP and neural 
modelling. One very strong conference series is the annual meeting on Neural Information 
Processing Systems (NIPS), although many good papers have also been published in other 
conference series such as the International Joint Conference on Neural Networks (IJCNN) and 
Computation in Neural Systems (CNS).  
 
At much the same time that interest in artificial neural networks, computational models of 
nervous systems, and other PDP systems was rapidly growing into a large international research 
community, orthogonal developments were taking place in research on artificial autonomous 
agents that exhibit adaptive behavior, discussed in the next section. 
 

2.4 Artificial Autonomous Agents and Adaptive Behavior 
 
While developments in PDP offered alternatives to symbolic models of cognition, independent 
questions were being posed concerning the assumptions, aims, and methods of traditional AI. 
PDP offered a new style of computing, closer in architecture to natural systems, but in many cases 
the tasks to which the early PDP systems were applied still often concentrated on high-level 
cognitive functions, such as language use, the application of ‘expert’ knowledge, or the learning of 
complex concepts. Without denying the importance of such topics in cognitive science, a number 
of researchers had turned their attention to the problem of designing or building artificial systems 
with a focus on lower-level cognitive functions. Although there was a long-established tradition in 
neuroscience and psychology of modelling low-level perceptual mechanisms, such as the abilities 
to detect visual motion or to distinguish between different frequencies of sound, which was also 
carried over to the new PDP paradigm, the new research paradigm had a key change of emphasis: 
the intention now was to create complete autonomous cognitive agents, rather than models of 
isolated cognitive functions. 
 
The motivation for this style of work came from a number of directions. One was the long-
standing aim to create autonomous mobile robots. Although industrial automation robots (e.g., 
arms used for welding or paint-spraying in automobile factories) were already in widespread use, 
they did not require significant intelligence or cognitive capacity to operate successfully. Such 
robots are rooted to the floor and the number of possible situations they can find themselves in is 
highly constrained in advance: the position of the part to be welded or sprayed is pre-determined, 
as is the sequence of movements that the robot must make to successfully complete the task. In 
stark contrast, if a robot is to be both mobile and autonomous (i.e., capable of self-determined 
movements using wheels, legs, or some other propulsion system, over extended areas of space 
and periods of time, without human intervention), then the number and variety of situations that 
can arise and problems to be solved rises very rapidly. There is a significant need for such robots, 
from esoteric applications such as exploring the surfaces of other planets (Brooks & Flynn, 1989); 
through operation in hazardous environments such as nuclear reactors, battlefields, and collapsed 
buildings; to more mundane tasks such as security patrols, package delivery, or cleaning 
operations in populated buildings such as hospitals, warehouses, or homes; along with a variety 
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of applications in toys and other entertainment systems. In all cases, basic ‘survival skills’ are 
required of the robot: the ability to wander around, without bumping into things, without getting 
lost, and without running out of power. It would be desirable to have robots with these and other 
more advanced skills pre-programmed. The more advanced skills might include the ability to 
learn the layout of an environment and decide sensible paths through it. 
 
But to program such behaviors into a robot controller requires that the dynamic, unpredictable, 
and unforgiving nature of natural environments is taken into account. Natural environments are 
almost always subject to a high degree of inescapable variation: levels of temperature, ambient 
light, and ground traction may vary considerably; sensors deliver noisy data; motors, gear-trains, 
and wheels can slip; humans may be wandering around, getting in the way, or forgetting to leave 
doors open (or closed). Potentially, the effects of all such variation need to be accounted for. 
Although traditional symbolic AI had long attempted to address the issues of path-planning for 
mobile robots, the use of sequential programs and logic-based reasoning on real robots (e.g., 
Moravec, 1983; Nilsson, 1984) really had not been very successful. 
 
Disenchantment with the state of symbolic-AI-based mobile robot research, and with AI in 
general, led Rodney Brooks (Professor of AI and Director of the AI Lab at MIT, the Massachusetts 
Institute of Technology), to write two papers (Brooks, 1985, 1986) that proved to be highly 
influential. Although historic precedents exist (such as the work of Walter and of Ashby, 
mentioned in Section 1), almost all current research in biologically-inspired autonomous robotics 
can be traced to these two seminal papers. In these papers, Brooks questioned the traditional focus 
on high-level cognitive abilities, arguing that models of cognition based on reasoning with 
symbolic representation of facts had serious shortcomings. Brooks’s central claims were that the 
basic ‘survival skills’ exhibited by all mobile creatures, even simple animals such as insects, 
provided a firm foundation on which more advanced cognitive functions could be based and that 
such systems were best studied by building mobile robots to test theories and techniques. He 
argued that traditional AI approaches based on separate modules for perception, reasoning, 
planning, and plan-execution, were inappropriate; and that instead the robots’ control 
architectures should be decomposed into a number of layers, each with access to sensors and 
motors, and each responsible for generating different levels of behavior, such as ‘wandering’, 
‘collision avoidance’, and ‘map-making’. Brooks referred to this new style of controller design as 
‘subsumption architecture’ (because some behaviour-generating layers could subsume the outputs 
of others, when appropriate), and demonstrated the theory in practice in a number of ‘complete-
creature’ robots (reviewed in Brooks, 1990), some of which were six-legged insect-like robots while 
others were wheeled vehicles. His justification for studying simpler insect-like systems is 
summarised in the following quotation: 

 
“Insects are not usually thought of as intelligent. However, they are very robust 
devices. They operate in a dynamic world, carrying out a number of complex 
tasks… No human-built systems are remotely as reliable… Thus I see insect level 
behavior as a noble goal for artificial intelligence practitioners. I believe it is closer 
to the ultimate right track than are the higher level goals now being pursued.” 
(Brooks, 1986). 

 
One of the key issues in the work of Brooks and his students is the different nature of problems 
faced by systems that are both embodied and situated. In stark contrast to Brooks’s robots, most 
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traditional symbolic AI systems were ‘disembodied’, existing only to reason about a given 
representation of knowledge about some domain: whether the domain was diagnosing blood 
diseases or steering a vehicle through a cluttered environment, the assumption in symbolic AI was 
that roughly the same set of techniques could be employed. However, experiences in constructing 
creature-like robots indicated that the nature of the agent’s coupling to its environment, i.e., the 
details of its embodiment, played a key role in determining appropriate control architectures and 
strategies. Moreover, many issues in designing the controllers had to be resolved by considering 
the nature of the environment in which the agent was to operate and the types of behavior that 
were required of it: that is, the details of its situatedness. The issue of primary significance was the 
on-going interaction between the agent and its environment. 
 
The concentration on interaction dynamics allowed sophisticated complex overall behavior to 
emerge from controllers that were relatively simple in comparison with equivalent knowledge-
based AI approaches. Often, the source of the complexity was the environment with which the 
agent was interacting: a point first raised in connection with AI by Simon (1969). The natural 
human tendency to anthropomorphise apparently cognitive agents could also reinforce the false 
conviction that complex processing was required to achieve purposive behaviors (a point well 
made in Braitenberg’s (1984) delightful book Vehicles). In many cases, traditional notions of 
representation and reasoning played no part in the operation of the agent, even in systems which 
could map their environments and determine sensible paths from their current location to a goal 
location (e.g., Matarić, 1990). Horswill (1993a, 1993b), one of Brooks’s students, developed a 
rigorous methodology for analysing target environments to determine constraints that could be 
used to simplify the design of the controller. This approach, taken to an extreme, gave rise to one 
of the slogans associated with Brooks’s work: the world is its own best model. That is, rather than try 
to develop sophisticated perceptual systems which could provide an internal representation of the 
external world, suitable for logic-based reasoning, it can be better to enter into a tightly-coupled 
interaction with the world relying less on complex representation or reasoning, and more on 
appropriately structured simple (even reflex-based) controllers. For extended discussions of 
Brooks’s arguments and ideas, see Brooks (1991a, 1991b). Arguments such as these led to a shift in 
attention away from computation as a central concept in cognition, towards using the tools and 
techniques of dynamical systems theory as a more rigorous and theory-neutral approach to 
cognitive science. For further details, see Smithers (1992), Thelen & Smith (1994), Port & van 
Gelder (1995), Smithers (1995), Beer (1995a), Harvey (1996b) and Cliff & Noble (1997).  
 
Although Brooks was initially a vocal opponent of simulation studies (Brooks, 1992), other 
researchers sympathetic to his arguments demonstrated important new principles and techniques 
using both real and simulated autonomous agents: for an early collection of papers, see Maes 
(1990). Autonomous agents simulated in software can act as ‘virtual creatures’ for scientists 
attempting to further the understanding of perception and cognition in animals: an issue explored 
briefly below. Moreover, agents with no physical realisation (i.e., that exist only in software) have 
significant potential for engineering and commercial applications, as was discussed in earlier in 
this document. Important work was done using software simulations to develop theories and 
models that addressed the problems of planning sequences of tasks in autonomous agents, and the 
action selection problem: how, given a set of (possibly conflicting) goals, to choose appropriate 
actions to perform --- “how to do the right thing”, in the words of Maes (1989). For examples of 
such work, see Agre & Chapman (1987, 1990), Chapman (1991), Maes (1989, 1990b), Tyrrell (1993, 
1994), Johnson (1991,1995) and Blumberg (1994, 1996).  
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While subsumption-architecture controllers were essentially PDP systems (being both parallel and 
distributed), there was no commitment in Brook’s work to developing models of real nervous 
systems, or even to using biologically plausible processing strategies. Despite this, neuroscientists 
Altman & Kien (1989) noted the similarities between the subsumption-architecture controllers of 
agents such as the walking robot described by Brooks (1989) and the organisation of neural control 
in a variety of animals. Subsequent to this, one of Brooks’s students explored a number of 
walking-robot controller-architectures that were more strongly inspired by biology (Ferrell, 1994). 
 
Having spent several years researching the development of robots inspired by simple creatures, 
Brooks and his students at MIT turned in 1993 to a much more ambitious research program: the 
construction of humanoid robots. This work was initially centred on the construction and ongoing 
refinement of an upper-torso humanoid robot called Cog. Several graduate students were engaged 
simultaneously in the development of Cog, and their combined efforts led to important 
innovations: see Adams et al. (2000) for an overview. Of particular note is Williamson’s (1999) 
work on the coupling of the dynamics of oscillations in simple “neural” circuits with the dynamics 
of the robot’s body (its arms in particular) for smooth control. Experiences with Cog triggered an 
interest in robots capable of interacting socially with humans, and one of Brooks’s students 
explored this in a purpose-built “emotionally expressive” robot head called Kismet (Breazeal, 
2000), which has manifest applications in entertainment. For a populist and very readable review 
of Brook’s contributions to behaviour-based robotics, see Brooks (2002).   
 
An individual robot with a behaviour-based control system can be considered as a complex 
system, because the small-scale interactions of its component behaviour-generating modules give 
rise to its overall large-scale observable behavioural repertoire. Furthermore, the individual 
behaviour-generating modules may themselves be delivering behaviours as the large-scale 
consequences of small-scale interactions if, for example, a module involves the use of an artificial 
neural network. Moreover, at higher level of analysis, an individual autonomous robot can be 
considered a small-scale component in a large-scale system if it is one of a number of robots 
working together as some form of team. Fruitful research in so-called collective robotics has been 
underway for a little over a decade (prior to that, the material costs and high failure rates of the 
requisite technologies made serious research in this area prohibitively expensive). While studies of 
teams of humans collaborating and cooperating on the solution of tasks is one potentially valuable 
source of inspiration, much early work in collective robotics draws inspiration from a more lowly 
biological inspiration: the collective behaviour of social animals, and in particular the social insect 
order hymenoptera (which includes ants, bees, termites, and wasps). More recently, a surprisingly 
large amount of research in collective robotics has been directed at an even lower form of life: 
soccer players, in the various leagues maintained by the international “RoboCup” 
(www.robocup.org) organisation.   

 
Inspired in part by Brooks’s creature-robots, Beer (1990) and Cliff (1990, 1991), independently 
developed remarkably similar arguments for adopting a more holistic approach to PDP and 
artificial neural networks; an approach they both referred to as computational neuroethology. In 
doing so, they gave a name to work that had long been practised by other researchers, most 
notably Arbib (1987). Briefly, neuroethology (e.g., Hoyle, 1984; Simmonds & Young, 1999) is the 
branch of biology that deals with the neural mechanisms underlying the generation of behaviors 
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in animals (ethology is the science of animal behavior: see e.g., Alcock (1989)). Both Beer and Cliff 
expressed dissatisfaction at the lack of behavioral relevance of much PDP and artificial neural 
network research, noting that models of isolated perceptual or cognitive process often relied on 
questionable input and/or output representations, and that Brooks’s arguments for building 
complete systems made it much less likely that unrealistic intermediate representations would be 
employed. Consequently, they both argued for the development of ‘complete-creature’ 
simulations of situated and embodied model animals: Beer (1990) developed a simulated 
cockroach, concentrating on issues in motor co-ordination for six-legged walking; while Cliff 
(1992) developed a simulated hover-fly, concentrating on issues in visual perception for flight 
control and target-tracking. More recent work in computational neuroethology is reviewed by 
Cliff (2003). Among other things, Beer’s work was significant for placing new emphasis on the 
notion of intelligence as adaptive behavior. 
 
The concept of adaptive behavior comes from the ethology literature. While a precise definition is 
still the subject of some debate, for the purposes of this discussion we’ll state that a behavior is 
adaptive if, when exhibited by an agent, it increases the reproductive fitness of that agent. For an 
animal, reproductive fitness is a matter of surviving in the animal’s ecological niche sufficiently 
long to reproduce and yield viable offspring. For an artificial autonomous agent, the reproductive 
fitness could perhaps be measured in terms of number of copies sold into the market, or more 
likely as a percentage of research and development costs recouped: McFarland (1990) introduced 
an economic rationalisation of adaptive behavior in artificial agents. It is important to note that 
adaptive behavior is different from the concept of adaptation, e.g. learning in animals or self-tuning 
control systems. For example, humans who inject heroin do so as a result of adaptation: it is an 
acquired behavior, rather than an instinctive one; but it is generally not an adaptive behavior, 
because it often has a severe impact on an individual’s reproductive fitness by killing them. 
Conversely, the avoidance of stepping over the edges of steep precipices (the “visual cliff 
response”), widespread throughout terrestrial mammals, is adaptive but not a result of adaptation 
in the individual because it is an innate response. However, such innate responses could be 
described as a result of evolutionary adaptation by populations or species over time-scales 
measured in multiple generations. Furthermore, many adaptive behaviors can be either fully or 
partially a result of adaptation, either evolutionary adaptation or learning within the lifetime of an 
individual. These issues are returned to in Section 2.5. 
 
Although early work in artificial autonomous agents and computational neuroethology had little 
or no emphasis on adaptation, it is widely acknowledged within the field that adaptation or 
learning is a central topic. Indeed, some of the early work on artificial autonomous agents was 
developed as a means of testing new approaches and techniques in machine learning. Machine 
learning is a diverse field, with a well-established journal (Machine Learning), and international 
conference series such as the International Conference on Machine Learning (ICML) and the Annual 
Conference on Computational Learning Theory (CoLT). It is beyond the scope of this document to 
provide a full review of techniques in machine learning: for an extensive recent textbook, see 
Mitchell (1997). Two early important papers describing simulated autonomous agents that learn to 
produce adaptive behavior are described briefly below. 
 
As was noted in Section 2.3, the most popular supervised learning technique for artificial neural 
networks is back-propagation. One of the major problems with supervised learning is its 
requirement for a training set (and test set) of input and output vectors. There is the practical 
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problem of the effort required to compile these lists of data; and the methodological objection that 
biological systems generally do not have such training data available: an animal does not learn to 
walk by comparing the angles of its joints to some set of target outputs. Parisi, Cecconi, & Nolfi 
(1990) developed a system where back-propagation was used in a ‘closed-loop’ fashion by an 
artificial autonomous agent: because the agent was embodied and situated, it had the capability to 
generate its own training data. The agent existed within a simple environment, and a back-
propagation network was employed to map between sensory inputs and desired outputs. Some of 
the network’s output units were interpreted as action commands, moving the agent’s body within 
the environment; the remainder of the output vector was a prediction of the sensory input vector 
that would result from the execution of the specified action. The actual input vector resulting from 
the execution of the action could be compared to the predicted values in the preceding output 
vector, to determine error values used to adjust the network parameters. Such work has strong 
connections with previous studies in using neural networks for control, where the input received 
by the neural network is determined at least in part by the past actions executed as a result of 
outputs given by the network: see e.g. the collection edited by Miller, Sutton & Werbos (1990); 
indeed, many of the central issues in research on controller networks were first discussed in the 
cybernetics literature (e.g., Weiner, 1948). 
 
In most cases of interest, the complexity of the animat-environment interaction system to be 
controlled is such that supervised learning cannot be employed, and so most emphasis in learning 
for control applications (whether using PDP networks or other technologies) is on the 
development of reinforcement-based techniques. In many control-learning problems, significant 
difficulties are posed by the temporal credit assignment problem: if payoff (reward or punishment) is 
received, it may not be a simple consequence of the immediately preceding action; rather, actions 
performed at some time in the past may have led to the receipt of payoff, and it is the processes 
that generated those past actions that should be rewarded or punished. Deciding the relative 
significance of each of a sequence of actions leading to the receipt of nonzero payoff, so that the 
payoff can be distributed appropriately, is often a highly problematic issue  (Sutton, 1984). 
 
Not all researchers working on autonomous agents that learn to exhibit adaptive behavior employ 
neural networks. In a seminal early paper, Wilson (1985) argued that an understanding of the 
process of acquiring behaviors appropriate to a given environment, however simple, is 
fundamental to the understanding of higher-level cognitive functions. To this end, he reported on 
results from a minimal simulation model where an artificial autonomous agent existed on a 
toroidal world divided into a rectangular grid of cells. At each cell there could be either a blank 
space, a ‘tree’, or an item of ‘food’. At any one time, the artificial agent occupied a blank-space cell, 
and could sense the contents of the surrounding eight cells: idealised minimal sensors returned 
two binary digits for each cell: one to indicate whether the contents of the cell were opaque, and 
one to indicate whether the contents ‘smelled of food’. Thus, a blank cell was sensed as 00, a tree-
cell as 01, and a food-cell as 11: the entire sensory input was sixteen bits of data formed by 
sampling the agent’s immediate surroundings. The agent produced a two-bit output, indicating 
which of the eight surrounding cells it would try to move into. Moves into tree-cells were blocked, 
but moves into blank or food cells were allowed. The agent had initially random mappings 
between sensory input and motor output, and employed a type of learning algorithm known as a 
learning classifier system (LCS) to learn to take short paths to food. LCSs are similar to traditional 
knowledge-based systems insofar as they employ if-then ‘production rules’ to determine what 
output is appropriate for a given input: classifier system learning involves tuning the production 
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rules to give better behavior, on the basis of ‘reward’ or ‘punishment’ received as a result of past 
actions, using a combination of reinforcement learning and evolutionary techniques (described in 
more detail in Section 2.5). Wilson coined the word Animat to refer to his ‘artificial animal’, a name 
which has since entered the research literature as a generic term for artificial creature-like 
autonomous agents. For further details of variations and extensions to Wilson’s animat and the 
classifier system employed, see Wilson & Goldberg (1989), Cliff & Bullock (1993), Wilson (1994), 
Cliff & Ross (1995), and Wilson (1995).  
 
The early 1990’s witnessed a surge of research activity on ‘autonomous agents’ and ‘agent-based’ 
approaches to a wide range of problems in computer science and artificial intelligence. 
Unfortunately a bandwagon effect took root, and the word ‘agent’ became seriously overloaded, 
being applied to a range of systems with widely divergent functions, architectures, and 
organisational principles and philosophies. There is a sizeable school of ‘agent’ researchers who 
are sufficiently reliant on logic-based manipulation of symbolic representations that their aims and 
methods are practically indistinguishable from the old-school symbolic AI of the late 1970’s. For 
this reason, the word ‘animat’ (Wilson, 1985) is often used to clarify that the style of agent being 
referred to is a biologically-inspired creature-like artificial autonomous agent, either real or 
virtual, responsible for co-ordinating its perception and action so as to produce adaptive behaviors 
for extended periods of time without human intervention. It is the animats that have been 
developed within the adaptive behavior research paradigm which are of most relevance to the 
subject of this review. In addition to the collections cited above, the journal Adaptive Behavior 
(published by MIT Press from 1992—1997; now published by Sage Publishing), is a main outlet for 
publishing work in this area, as are the proceedings of the International Conference on Simulation of 
Adaptive Behavior} (SAB), which have been published biennially by MIT Press since 1990, under the 
series title From Animals to Animats. Clark’s (1996) book is a highly readable review of key 
developments over the preceding ten years in research dealing with animats, adaptive behavior, 
and neuroscience. For more populist accounts, see Wallich (1991) and Kelly (1994). 
 

2.5 Evolutionary Computation 
 
For most interesting behaviors and environments, the task of designing control systems for 
animats (whether real robots or software agents) is non-trivial. As was noted above, the 
development of learning algorithms for PDP networks was necessary because of the generally 
extreme difficulty of manually determining appropriate settings for the parameters of the system. 
In essence, this is a problem in function optimisation: trying to find a combination of parameter 
values (i.e., a point in parameter space) that minimises or maximises some function. In the case of 
a supervised-learning PDP network, the function to be minimised is given by the error measure. 
Although Darwinian evolution in biology is not actually an optimisation process, it has inspired 
the development of several techniques for optimisation, which will be briefly reviewed here. 
Evolutionary computation techniques are of particular interest for optimising the design of 
CTRNNs, as no traditional neural-network learning algorithms have yet been developed for 
training CTRNNs with the same effectiveness that gradient-descent methods such as back-
propagation exhibit on feed-forward networks.  
 
All evolutionary computation approaches to searching a given parameter space share a common 
core of concepts, introduced below. Evolutionary approaches have been applied to a wide variety 
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of optimisation problems, for a review, see the textbooks by Goldberg (1989) and Mitchell (1998). 
The focus here is on the use of evolutionary techniques in designing artificial neural networks for 
autonomous agents, because of its obvious relevance to the study of cognitive systems. 
 
One of the most popular and deeply-studied forms of evolutionary computation is the so-called 
genetic algorithm. The basic form of genetic algorithm (GA) is relatively simple to explain: 
 
Consider the task of finding a good or optimal set of n parameters for a neural network. That is, 
finding good or optimal points in the n-dimensional parameter space for the network. To use a 
GA, first develop a method for encoding the parameters as a string of characters. One simple and 
popular method is to encode the numeric values as strings of binary digits (bits). So for an n-
dimensional parameter space, with each parameter encoded by b bits, the string is b.n bits long. 
Start by randomly generating some number of such strings. Borrowing terminology from biology, 
each of the strings is referred to as the genotype (or genes) for an individual in the population. Next, 
enter an iterative loop of evaluation and breeding. In the evaluation phase of the loop, individuals 
are tested to measure their performance (e.g., on a test-set of data, in much the same way as in 
PDP learning algorithms), and assigned a single numeric fitness value, representing how good 
they are. When all individuals have had their fitness evaluated, breed a new population of 
individuals by selecting fitter members of the evaluated population as ‘parents’, and mixing their 
genes in ways inspired by the recombinant genetics of sexual reproduction, possibly also 
introducing random alterations or mutations to the genes. Finally, dispose of the old population, 
replacing it with the newly-bred one. This process of taking a population, evaluating each 
individual, selecting parents, and breeding a new population to replace the old one, is referred to 
as one generation. If the parameters governing the operation of the GA are set correctly, the best or 
average fitness in the population will rise over a number of generations: the GA is really not much 
more than a directed stochastic generate-and-test search process. 
 
The operation of a simple GA such as this can be viewed in a similar manner to PDP learning 
trying to find minima on an error surface (discussed in Section 2.3). Each possible genotype 
represents a point in genotype space, and the function used for fitness evaluation defines a fitness 
surface or landscape over this space. The aim of the GA is to find points of high (or maximal) fitness 
in the fitness landscape. In contrast to PDP learning, where a single network traces a trajectory of 
points through parameter space as the learning algorithm alters settings of weights and 
thresholds, adaptation in a GA is a consequence of a parallel search of the parameter-space that is 
encoded in the genotype-space: each individual in the population occupies a point on the fitness 
landscape. Individuals at low levels in the landscape are unlikely to be selected for breeding; 
whereas high-fitness individuals, more likely to be selected for breeding, will combine their genes 
with other fit individuals. Consequently, in the next generation, there should be proportionately 
more individuals at high points on the fitness landscape and fewer at the low points. Over 
successive generations, the population is said to converge on peaks in the fitness landscape. In 
many GA applications, the GA is set to run for a pre-determined number of generations, but in 
some cases the system monitors convergence and terminates the evolutionary process once the 
population reaches some level of convergence: the ‘evolutionary search’ is considered to have 
ended when the population has converged beyond some level. Convergence can be measured by, 
for example, calculating summary statistics such as the mean Euclidian (straight-line) distance 
between individuals in genotype space. As with the problem of local minima on error surfaces, 
premature convergence to local peaks on fitness landscapes can cause significant problems. In 
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essence, the selection mechanisms help converge the population on fitness peaks, and the addition 
of random mutations helps ‘spread’ the population ‘downhill’, away from the peaks. In 
picturesque terms, mutation can be thought of as moving individuals onto lower ground, in the 
hope that new paths to even higher nearby peaks can be found from there. Striking an acceptable 
balance between selection and mutation is very important. If the mutation rate (often expressed as 
the probability that an individual ‘child’ genome will have the character at one randomly 
determined locus altered to a randomly determined different allele) is too low, premature 
convergence to local sub-optimal peaks is more likely; but with too high a mutation rate, the GA 
degenerates to random search. Some researchers (e.g., Fogarty, 1989) have developed techniques 
for dynamically varying the mutation rate as a consequence of changes in convergence. 
 
The balance between mutation and selection is only one of many issues in constructing a working 
GA. Another important issue is the selection mechanism: much research has gone into exploring  
the effects of different styles of selection upon the evolutionary process (e.g., Whitley, 1989). One 
of the most popular styles is roulette selection, where the probability that an individual is selected 
to be a parent is given by calculating what proportion of the total population fitness is given by 
that individual’s fitness: metaphorically, a roulette-wheel is used, where the size of the slice of the 
wheel given to each individual is proportional to its fitness. The relative differences between the 
probability of selection between individuals of differing fitness is referred to as the selection 
pressure: in roulette selection, the selection pressure can be varied by, for instance, making the size 
of each individual’s slice on the wheel proportional to a power or exponential function of the 
individual’s fitness (giving a greater bias to fitter individuals), or using a logarithmic function of 
fitness to reduce the advantage given to fitter individuals. However, a number of authors have 
argued that there are significant problems with roulette selection: in the early stages of the GA, if a 
fit mutant is generated, its fitness may be orders of magnitude better than the remaining 
(randomly generated) individuals, and so the population rapidly converges on points in genotype 
space near the mutant. An alternative process of tournament selection has been advocated, where 
individuals compete for the right to breed in ‘tournaments’: in a simple form of tournament 
selection, three individuals may be selected at random and the fittest two of the three are allowed 
to breed, with the least fit of the three being replaced by the child that results from breeding. 
Tournament selection gives less bias to fit mutants occurring early in the evolutionary process, 
and preserves diversity. Such a tournament selection process gives rank-based selection, where 
differences in the reproductive activity of a group of individuals depend on the numerical ranking 
of their fitnesses, rather than the magnitude of the differences between their fitnesses. For further 
discussion of the benefit of rank-based selection, see Whitley (1989). 
 
A variety of other methods of selection have been developed, such as truncation selection, where a 
fixed number of high-fitness individuals (e.g., the top 10%) are all given an equal probability of 
selection, and the remainder of the population are excluded from the breeding process. Finally, a 
common technique in many GA applications is elitism, where a copy of the fittest member of the 
evaluated population (the elite individual) is always added into the population of the next 
generation without mutation, thereby ensuring that the best individual encountered so far is 
always preserved. Without elitism, there is an increased danger that genetic drift sets in, with the 
population never returning to previously-visited high points on the fitness landscape. 
 
Other refinements to the GA process have been proposed for avoiding premature convergence 
and promoting diversity. One is the use of spatially distributed GAs, where the population is 
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arranged on a spatial grid (typically in two or three dimensions, but higher dimensions are 
perfectly possible). In breeding, individuals can only reproduce with ‘nearby’ neighbours, and the 
offspring are assigned grid-cells in the next generation that are close to the places occupied by 
their parents in the current generation. This contrasts with the conventional GA, which is 
panmictic: there is no structure to the population and any individual can, in principle, breed with 
any other. The intention in spatially distributed GAs is that there is convergence on a local scale, 
but no necessity for individuals at distant points in the grid to be genetically similar. This can be 
considered as a loose approximation to natural evolving populations, where geographic spread 
can facilitate the formation of separate species: members of the same species share much genetic 
material (are highly converged), but the presence of multiple species ensures that the overall gene-
pool is diverse. The different groups can be thought of as separate local clusters or ‘clouds’ in 
genotype space. A second method is the use of a steady-state GA (SSGA). An SSGA differs from a 
conventional (or generational GA) in that there is no division of the evolutionary process into 
discrete generations: rather, at each iteration through the loop, two individuals are selected for 
reproduction, offspring are bred, and individuals are then selected for replacement by those 
offspring. Thus in a SSGA successive generations meld into one another, with smooth changes in 
the genetic constitution of the population, rather than the possibly discontinuous jumps of a 
generational GA. SSGAs can be either panmictic or spatially distributed. 
 
The algorithmic simplicity of most GAs means that the step of evaluating the fitness scores of the 
individual genotypes can represent the most significant computational cost in many GA 
applications. In cases where the genetically encoded parameters are used to define a neural 
network for replicating some input-output mapping, the length of time taken to evaluate an 
individual is proportional to the number of input-output pairs in the training set. But when the 
aim is to evolve networks that produce adaptive behaviors in animats, it is generally necessary to 
make multiple evaluations to generate statistically reliable fitness data. Multiple evaluations are 
clearly necessary if the agent or environment are stochastic (e.g., if there is noise in the system), 
but even in purely deterministic systems it may be necessary to make multiple trials to explore the 
effects of changes in initial conditions, or of differing environments. Aizawa & Wah (1994) 
developed sophisticated statistical techniques for varying the number of trials per individual both 
within and between generations. Furthermore, for many desired behaviors that are easily 
expressed in English, formulating an appropriate mathematical evaluation function can be a 
surprisingly difficult task. The evolutionary process may well find peaks on the fitness landscape 
resulting from a given evaluation function, but even if these are global maxima they might not 
correspond to the behaviors desired by the designer of the system: an issue discussed further by 
Zaera, Cliff, & Bruten (1996), and Matarić & Cliff (1996). 
 
The reproduction process involves the application of genetic operators. In addition to mutation, 
where characters at randomly chosen positions on the gene-string are replaced by other randomly 
chosen characters, sexual reproduction is modelled using recombination, also referred to as 
crossover. Having used the selection mechanism to identify two ‘parent’ genotypes, one of the two 
parents is randomly chosen and characters from its genotype are copied into the child’s genotype. 
At a randomly chosen position, the copying process will ‘cross-over’ to the corresponding position 
on the genotype of the other parent, copying the remainder of that parent’s genotype into the 
child’s genome. Thus, the child inherits some of its genetic material from the first parent and the 
rest from the other parent. This, so-called ‘one-point crossover’ is the simplest form: more 
sophisticated forms may involve multiple crossings back and forth between the two parents; and 
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some researchers have experimented with systems involving more than two parents (e.g. Eiben, 
van Kemenade, & Kok, 1995). 
 
In cases where the genotype represents a small number of numeric parameters, formulating an 
encoding scheme is not especially problematic. While the parameters can be encoded as binary 
strings, making mutation and crossover straightforward, it is increasingly common to eliminate 
the computational costs involved in converting between the binary genes and the decimal values 
used in evaluating the genotypes. Instead, the genotype is a string of decimal parameter values: 
mutation involves adding randomly generated values to one or more of the numbers on a 
genotype, and crossover remains much the same. Nevertheless, the ordering of the parameters on 
the genetic encoding can have a significant effect on the evolutionary process. If two parameters 
are represented by numbers or character strings that are positioned at loci close together on the 
genotype, there is less chance that they will be separated in the crossover process than if they are 
positioned far apart on the genotype. As the distance between the two loci is reduced, it is more 
likely that a child will inherit the values of both parameters from one of its two parents, rather 
than one value from the first parent and the other value from the second parent. This is important 
if there is some degree of linkage between the two parameter values: if the fitness contribution of 
one parameter is determined at least in part by the value of the other parameter, then once a good 
combination of values is present on a genotype it is desirable that these two genes are not 
separated in reproduction. 
 
In most cases of interest, the fitness contribution of any one genetically specified parameter will be 
dependent on the values of several other parameters on the genotype. The network of cross-
dependencies can be complex, and can have a radical effect on the nature of the fitness landscape. 
This phenomena is referred to as epistasis: if an evolving system is highly epistatic, there is a high 
degree of interdependency; while a low-epistasis system allows each of the parameter values to be 
altered largely independent of the others. The degree of epistasis is a consequence of the 
interaction between the encoding used and the fitness evaluation function, and determines the 
nature of the fitness landscape. A highly epistatic (or rugged) fitness landscape may have multiple 
false peaks, deep chasms, and cliffs, all of which offer potential traps for the trajectories of 
individuals evolving over that landscape. In general, less rugged (or more smooth) fitness 
landscapes are desirable. Unfortunately, it is frequently difficult or impossible to predict in 
advance the degree to which epistasis will be a problem. In applications involving complex 
encodings or where multiple expensive evaluations are needed to determine the fitness of each 
individual, it is common to try to characterise the ruggedness of the fitness landscape by empirical 
means. One method of doing this is to estimate or measure a metric of fitness correlation: an 
indication of the relationship between distance in genotype-space (e.g., number of single 
mutations) from a given genotype, and the resultant change in fitness. For smooth landscapes, 
moving small distances in genotype-space will result in small positive or negative effects on 
fitness, while in rugged landscapes the fitness changes will be less correlated, or random. 
Furthermore, many fitness landscapes have plateaus: areas of connected points in genotype-space 
with the same fitness value, where genetic drift can easily occur. The presence of plateaus or 
“neutral networks” in a genotype space may have beneficial effects on an evolutionary process 
operating in that space space (see e.g. Huynen et al., 1996; Barnett, 1997).  Kauffmann (1993) developed 
a set of theoretical models known as NK landscapes, modelling arbitrary genotypes of length N 
with the fitness contribution of each gene being dependent on K other genes in the genotype. By 
varying K as a proportion of N from zero to one, fitness landscapes can be varied from perfectly 
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smooth to highly rugged and uncorrelated surfaces. Many researchers have used NK models as 
test-beds for developing new GA techniques, although fitness landscapes in real applications are 
likely to show combinations of smooth zones, rugged zones, and plateaus; rather than the 
uniform-epistasis landscapes generated by NK models.  
 
For situations where a system to be optimised by evolution has a large number of parameters, 
straightforward linear encodings of the parameters on the genotype frequently become unwieldy. 
For example, a neural network with 20 numeric parameters, each encoded as 16-bit values, 
requires a genotype of 20 x 16=320 bits, thus the total number of points in the space of possible 
genotypes is 2320, or approximately 2 x 1096. This is significantly more points than the number of 
atoms in the known universe. Although not all of these points need be evaluated in the 
evolutionary process, it is clear that the lengths of genotypes, and the number of points in the 
genotype space, can rise very rapidly. Furthermore, attempting to evolve a good combination for a 
fixed number of parameters presupposes that the correct number of parameters is known at the 
outset. In evolving a neural network, this requires that the number of units and connections is 
specified in advance. If the number of parameters is not roughly correct, severe problems can 
occur: the network may be too small to perform the required task (e.g., by not having sufficient 
numbers of internal units); or the network may be too big, in which case the desired parameter-
space is a sub-space of the evolutionary parameter space, and resources may be wasted just in 
getting the population into the right sub-space. For these reasons, among others, a number of 
researchers have developed GA principles and methods that allow variable-length genotypes. 
 
If the length of the genotype can vary, and the length corresponds in some way to the number of 
parameters in (or the complexity of) a design, then in principle it is possible to start with a 
population of short genotypes encoding for simple designs. Provided that there is sufficient 
variation in the behaviors of the initial population for evolution to operate, longer genotypes or 
more complex designs will occasionally occur and will be retained in the population if they have 
sufficiently increased fitness. Thus, it should be possible to continue evolution, with the 
complexity of the designs increasing until the desired behaviors are exhibited by the evolving 
individuals. This is clearly a much more powerful method than evolving fixed lists of parameters. 
But with this added power comes additional problems. First, visualising the evolutionary process 
is now more difficult: as the length of the genotypes grows, the dimensionality of the search space 
increases. Individuals in the same population with different-length genotypes are points in 
parameter-spaces of different dimensions, and the search is now not just for an appropriate setting 
of parameters, but also for an appropriate dimension of parameter-space. Furthermore, deciding 
on how best to perform crossover on two parent genotypes that differ in length is problematic. 
These and other issues have been studied in depth by Harvey (1990, 1992a, 1992b, 1993), who has 
developed a set of principles referred to as species adaptation genetic algorithms, or SAGA, for 
dealing with variable-length genotypes in a variety of applications. In SAGA systems, the 
population is always highly converged, and can be viewed as a species: much more emphasis is 
placed on mutation (which, combined with selection, moves the population through the space of 
possible genotypes) than recombination (i.e., crossover, which is seen as the driving force in 
converging to solutions in fixed-length GA systems). 
 
Genotype lengths can be varied by a number of means. The crossover operator can be adjusted so 
that, rather than jumping to the corresponding character in the other parent, the jump is to a point 
in the genotype either somewhere before or somewhere after the current copying location; 
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resulting in either a longer or a shorter child genotype, even if the two parents have identical-
length genotypes. This was the method used in early tests of SAGA for evolving neural network 
controllers for animats (Cliff, Harvey & Husbands, 1993; Harvey, Husbands, & Cliff, 1994). 
Another possibility is to introduce new genetic operators such as ‘deletion’, which deletes a 
randomly selected sequence from the genotype, closing up the gap to give a shorter string, or 
‘duplication’ which takes a sequence on the genotype with randomly chosen start and end points, 
and attaches a duplication of that sequence to the genotype at some other point (e.g., inserting the 
duplication immediately after the original sequence, or at one end of the genotype): see Miller & 
Cliff (1996) for discussion of the beneficial use of a duplication operator. 
 
When genotype lengths vary, more sophisticated genetic encoding schemes are needed. The 
encodings must cope with variations in length while still coding for useful designs, without 
allowing the genetic operators used to cause severe epistatic interactions. A number of workers 
have addressed this problem, which continues to be an active research issue. A notable body of 
work has been originated by Gruau (Gruau & Whitley, 1993; Gruau, 1994), who identified a set of 
desirable properties for variable-length encodings of neural networks, and then developed an 
encoding scheme that he demonstrated in use for evolving a variety of networks, including animat 
controllers. Gruau uses techniques inspired by Genetic Programming, popularized by Koza (1992, 
1994), where variable-length hierarchical tree-structured genotypes are evolved: Koza’s work has 
concentrated on the use of these techniques to evolve expressions and programs (often using 
subsets of the LISP language). Gruau’s work involves evolving hierarchical developmental 
‘programs’ specifying a sequence of operations to be performed on an initial ‘cell’ that undergoes 
a sequence of ‘divisions’ to form the final network. This process is similar to the manner in which 
a single fertilised egg goes through successive divisions to produce a foetus that subsequently 
matures. By the same analogy, much other research on genetic encodings (for fixed or variable-
length genotypes) concentrates on the genome specifying a set of parameters to a ‘development’ or 
morphogenesis process that determines the final agent architecture. In several cases, researchers 
have noted that the genes should specify not only the control architecture, but also the physical 
design (or ‘morphology’) of the agent (Brooks, 1992; Cliff et al., 1993; Sims, 1994, 1995). 
 
When evolving neural networks, the genotype can specify the thresholds and weights of the 
network, which then remain fixed throughout the ‘lifetime’ of that network. However, a number 
of researchers have studied systems where the genotype specifies the initial values of the network 
parameters, which are subsequently adjusted by a learning algorithm during the lifetime of the 
network. In a landmark paper, Hinton & Nowlan (1987) provided the first demonstration of this, 
where the ability to learn from experience allows a population to evolve on an otherwise 
impossibly epistatic landscape. The significance of this paper is that, while it generally accepted 
that experiences acquired through the lifetime of an individual cannot be passed on in its genes 
(so-called Lamarckian inheritance), Hinton & Nowlan’s abstract simulation study demonstrated that 
the Baldwin effect operates to the advantage of the population: in an evolving population of 
agents each with the ability to learn during their lifetime, the presence of learning can guide the 
population to high-fitness areas of genotype space. For further theoretical studies of the Baldwin 
effect see Mayley (1996a, 1996b) and Harvey (1996a); for early work on evolving neural networks 
that learn, see Miller, Todd, & Hegde (1989) and Belew, McInerny, & Schraudolhp (1992); more 
recent studies include Floreano & Mondada (1996) and Nolfi & Parisi (1997). 
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Finally, all of the preceding discussion has assumed that the fitness landscape is essentially fixed 
for the duration of the evolutionary process. In real biological systems, this is rarely the case. The 
fitness of members of a particular evolving population may be dependent on the behaviors of 
members of other populations, which are themselves evolving. Thus, the fitness landscape of the 
first population can be altered by evolutionary changes in a second population. The clearest 
examples in nature of such co-evolutionary interactions are between species of parasite and host, 
or between predator and prey: predators may evolve more powerful bodies or behaviors, 
increasing their reproductive fitness by catching more prey; this alters the fitness landscapes of 
prey, giving a pressure to evolve better camouflage or faster and more agile escape behaviors -- 
when the prey have evolved to counteract the evolutionary developments of the predators, the 
evolutionary pressure is transferred back to the predator population, to evolve even better bodies 
or behaviors. These kind of co-evolutionary arms-race interactions are often referred to as 
examples of the Red Queen effect (Van Valen, 1973), after the character in Lewis Carroll’s Alice’s 
Adventures Through the Looking Glass who had to keep running forward in order to stay at the same 
place, because the landscape was moving underneath her. Evolutionary arms-races in biology 
have inspired workers in artificial evolution to use co-evolution as a method of encouraging 
continuing and open-ended evolutionary innovation. One of the first examples of applying 
artificial co-evolution to problems of genuine industrial interest was by Hillis (1991), who co-
evolved a population of individual sorting algorithms (whose fitness was determined by their 
ability to sort lists of integers) against a population consisting of lists of integers (whose fitness 
was determined by their ability to cause problems for the sorting algorithms). For an extended 
discussion of the use of co-evolution in evolving animats, see Miller & Cliff (1994), and for 
discussion of the problems involved in monitoring progress in such systems, see Cliff & Miller 
(1995). Theoretical studies of co-evolution include Kaufman’s (1993) extension of the NK models to 
cover a number C of interacting species (yielding NKC models), and the work by a number of 
authors studying co-evolutionary interactions in systems evolved to play the Prisoner’s Dilemma 
Game: see e.g., Axelrod (1984), Lindgren (1992), Stanley, Ashlock & Tesfatsion (1993), and Batali & 
Kitcher (1994). Sims (1994, 1995) produced visually impressive work using variable-length 
genotypes for co-evolving the control-networks and body-designs of virtual animats. 
 
One novel issue in co-evolution, explored by Todd & Miller (1993), is the use of sexual selection, 
where the reproductive fitness of individuals is dependent on their ‘desirability’ to members of 
the opposite sex. Sexual selection as a force in evolution was long overlooked but has received 
increasing attention in recent years: see e.g. Cronin (1993) and Ridley (1993). Classic examples of 
the effects of sexual selection are physical and behavioral ‘ornaments’ such as the brightly 
coloured tails of peacocks or elaborate patterns of ‘ritual’ courting behavior. Todd & Miller (1993) 
demonstrated sexual selection in action using a simple simulation, where breeding-pairs were 
chosen on the basis of the mate-preferences of individuals. They showed that the effects of sexual 
selection can drive populations of individuals away from local fitness peaks, possibly resulting in 
the discovery of higher peaks. Sexual selection can also be a cause of speciation, where a single-
species population evolves into two or more distinct species that do not interbreed or are not 
capable of doing so, as a result of mate-choice. Miller (2000) argued persuasively that runaway 
sexual selection was a primary factor driving the evolution of those cognitive and intellectual 
abilities in humans that distinguish us from other primates.  
 
As with artificial neural networks, the fundamental ideas in artificial evolution have been present 
in the literature since the 1960’s, but have only attracted significant interest in the past two 
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decades or so. John Holland of Michigan University is widely acknowledged as the founder of 
genetic algorithms: see Holland (1975, 1992), and Holland et al. (1986). Holland (1975) is credited 
with the development of the Schema Theorem, a mathematical argument to the effect that useful 
‘building blocks’ on the individuals’ genotypes will be combined by the crossover operator, giving 
efficient search despite the essentially random nature of the GA. 
 
There are a number of respectable conference and workshop series addressing issues in 
evolutionary computation. Two of the earliest and longest-established conference series are the 
biennial International Conference on Genetic Algorithms (ICGA: established 1985) and the 
biennial conference on Parallel Problem Solving from Nature (PPSN: established 1990). A number 
of smaller and more specialised conference series ran through the 1990’s, but recently a series of 
mergers have led to the two main conferences in the field being the annual Congress on 
Evolutionary Computation (CEC), and the annual Genetic and Evolutionary Computation 
Conference (GECCO), within which the ICGA series is now subsumed. The premier journals 
dedicated to artificial evolution are Evolutionary Computation, published since 1992 by MIT Press; 
and the IEEE Transactions on Evolutionary Computing, established 1996. In addition to the regular 
conferences proceedings, a number of edited collections resulting from workshops and other 
meetings have been published: the Foundations of Genetic Algorithms (FOGA) series is notable 
for the high technical standard of its contributions. Papers involving the application of artificial 
evolution are also frequently published in related journals such as Artificial Life, Adaptive Behavior, 
Machine Learning, and Complex Systems; and related conferences such as the ICML, CoLT, SAB, 
ECAL and A-Life series introduced in previous sections. Readers interested in the underlying 
biological issues are referred to Sigmund (1993) and Dawkins (1982, 1986, 1989) for popular 
accounts; to Griffiths et al. (1993) for detailed discussion of genetics; and Gilbert (1992) or Edelman 
(1988) for detailed discussion of morphogenesis and other issues in developmental biology. For an 
extended review of the application of evolutionary techniques to robotic autonomous agents, and 
a discussion of some of the significant problems and challenges, see Matarić & Cliff (1996). 
 

2.6 Artificial Biochemistries 
 
Artificial biochemistries have been a constant theme of research within the A-Life literature since 
the first meetings in the late 1980s. Most of the published research has concentrated on modelling 
the origin of life, i.e. the emergence of early self-replicating molecules (such as RNA) from a 
‘prebiotic soup’. In particular, attention has been focused on studying abstract computational 
models of autocatalytic sets. 
 
In brief, an autocatalytic set is a group of reactive molecules that each act as catalysts. A catalyst is 
a chemical that can influence (e.g., enable or accelerate) a chemical reaction without being 
permanently changed by its involvement in that reaction. The catalysts in an autocatalytic set are 
involved in the production of a cyclic chain-reaction leading to the generation of more of the same 
catalysts. For example, if a catalytic molecule A  is added to a ‘soup’ of chemicals, and it catalyses a 
reaction that produces a new molecule B, and B catalyses a reaction yielding another molecule C, 
and C is a catalyst for a reaction that produces another molecule D, then a chain of reactions 
yielding D can be initiated by adding a quantity of A to an appropriate ‘soup’. However, if D itself 
catalyses a reaction that yields some quantity of molecule A, then the chain becomes a loop or 
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cycle. If the conditions are right, such a cycle might give rise to a self-sustaining chemical reaction: 
the addition (or random synthesis) of a small quantity of any one of the catalysts in the 
autocatalytic set establishes the cycle of reactions which then continues as long as resources allow. 
In real autocatalytic sets, there may be multiple loops with cross-connections between them. Such 
cyclic reactions have been argued to be the basis for the emergence of complex biochemical 
reactions that sustain life (Kauffman, 1993), and also to be a useful metaphor for economic systems 
(Waldrop, 1993, pp.120—125). The concept of autocatalytic sets is attributed to Kauffman. Almost 
all the early relevant papers on this and related topics in the A-Life literature are covered by the 
following references: Tamayo & Hartman (1989); Zeleny, Klir, & Hufford (1989); Lugowski (1989); 
Rasmussen (1989); Rasmussen et al. (1989); Kauffman (1991, 1993); Bagley & Farmer (1992); 
Bagely, Farmer, & Fontana (1992); Fontana (1992); Schuster (1992); Morowitz (1993); Kitano (1994); 
& Banzhaf (1994).  
 
The degree of research activity in such artificial biochemistries is not yet sufficiently large to 
warrant establishing an international learned journal dedicated to the topic, but journals such as 
Physica D, Complex Systems, and The Journal of Theoretical Biology are possible publishing outlets in 
addition to the Artificial Life journal and the A-Life conferences.  
 
In addition to abstract theoretical models, computer simulations are increasingly being used to 
model real biochemical systems for research in molecular biology and the pharmaceuticals 
industry. A number of companies have been established in the last two decade, dedicated to the 
use of artificial evolution techniques for drug design. However, rather than use genetic algorithms 
or other in silico computational approaches, real molecules are generated at random, evaluated, 
and selected in vitro.4 For further details, see e.g. Joyce (1992) and Schuster (1993, 1995). 
  
Farmer (1991) draws explicit mathematical links between connectionist networks and autocatalytic 
sets, offering the possibility of a unified treatment of the two topics. Subsequent to the publication 
of Farmer’s paper, new developments in neuroscience research have opened up the possibility of 
creating systems that incorporate significant interactions between artificial neural networks and 
artificial biochemistry. While much of that literature deals with issues in the origins of complex 
organic compounds and self-sustaining cyclic chain reactions, there is a small but growing body of 
work that addresses the interaction of biochemical activity with the operation of a neural network. 
 
Although the effects of psychoactive hormones and drugs have long been studied in 
neurobiology, the assumption was long held that all signalling from one neuron to another was 
via direct connections at the synapses (the point where an output terminal or axon of a signalling 
neuron connects with the membrane of receiving neuron). Most such connections are chemical: 
electrical activity on the membrane of the signalling neuron initiates the release of small packets of 
neurotransmitter chemical from the axon onto the membrane of the receiving neuron, a process 
which alters the level of electrical activity on the receiving neuron's membrane. Much less 
common are electrical connections, where electrical activity on the signalling neuron's membrane 
directly affects that of the receiving neuron, without intervening neurotransmitters being released. 

                                                 
4 The prospect of genetically modifying simple life-forms such as bacteria or plant-life to create new drugs means that in 
vivo techniques are now frequent complements or rivals to in vitro procedures. When using in silico computational 
simulations there is a clear need for verification and validation by cross-checking the output of computational models 
against data from similar experiments with real data: in vivo veritas, one might say. 
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However, recent developments in neuroscience have identified the presence of gaseous 
neurotransmitters: nitric oxide in particular. This discovery indicates that neurons may be capable 
of signalling in a diffuse manner, by release of gases to nearby neurons. For further details, see e.g. 
Elphick et al. (1995, 1996). One of the first artificial neural network models that interacted with an 
associated computational biochemistry was described by Grand, Cliff & Malhotra (1996) and 
Grand & Cliff (1998); see also Grand (2000), but this was closer in spirit to the way in which 
hormones affect neural activity. Recent research in artificial neural networks that incorporate 
models of gaseous neuro-modulation in addition to direct connections between neurons includes 
the work by Phillippides et al. (2000) and Husbands et al. (2001). 
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3 Applications of Artificial Autonomous Cognitive Agents 

“Real-world” applications of artificial autonomous agents with animal-like capabilities have 
attracted increasing attention over the last two decades, and a primary influence is the desire to 
build truly autonomous mobile robots. Nevertheless, autonomous agents that exist purely as 
software entities (with no physical realisation) also have a number of important commercial and 
scientific applications. This section briefly reviews the state of the art in Section 3.1 and then 
discusses what role biological metaphors might play in future developments in Section 3.2. 

3.1 State of the Art 
 
The word “agent” has in the past decade come to mean many things to many people, and there is 
a tension between some of those meanings. Some perfectly well-meaning and respected 
researchers consider the use of an agent metaphor to be a natural next step for use in computer 
programming in general. Such a transition to “agent-oriented programming” would be similar to 
the spread and adoption of object-oriented programming techniques (as embodied in 
programming languages such as C++ or Java) that occurred during the 1990’s. Under such a view, 
any procedure, method, or function performed by a computer program can in principle be 
referred to as an agent if the programmer chooses to do so, and indeed non-agent legacy software 
systems can also be “wrapped” in an agent interface, thereby hiding their non-agent origins. 
While this approach has some appeals viewed within the context of the history of programming 
language design, it also has the effect of widening the definition of the word “agent” almost to the 
point of vacuity. It is beyond the scope of this document to provide a review of the entire field of 
research in artificial autonomous agents. The interested reader is referred to the International 
Journal of Autonomous Agents and Multi-Agent Systems (published by Kluwer since 1997) and the 
associated international conference series that has been running since 1998 (see www.aamas-
conference.org), which are noted both for their high editorial standards and also for their very 
broad interpretation of what counts as an “agent”. Here we focus our attention on those strands of 
autonomous agent research that have a strong complex adaptive systems focus, and where ideas 
or metaphors from biological systems have influenced the development of new techniques or 
technologies; that is, we focus here on BICAS treatments of agents.   
 
One obvious distinction within BICAS agent research is between real physical artificial 
autonomous agents (i.e., robots), and agents with no physical embodiment, i.e. software agents 
that exist purely in virtual environments. We discuss the state of the art in these two areas 
separately in Sections 3.1.1 and 3.1.2 respectively.  
 

3.1.1 Autonomous Robots 
 

As was discussed above, the mid-1980’s work of Brooks and his students at MIT argued forcefully 
for a behaviour-based or “bottom-up” approach to cognition, which presumes that displays of 
intelligence are the product of complex interactions between the behavioural repertoire of an 
agent and its environment, where that agent’s behavioural repertoire is itself the product of the 
non-linear system formed from multiple interacting behaviour-generating modules within the 
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agent. Although the practicality of this approach was demonstrated in a series of “insect-like” 
autonomous mobile robots developed by Brooks and his students at MIT during the late 1980’s, 
subsequent attempts to apply behaviour-based engineering techniques in creating more 
cognitively complex behaviours proved difficult. In the early 1990s, Brooks’ MIT group shifted its 
attention to the construction of the humanoid robot Cog (see www.ai.mit.edu/projects/cog), again 
using behaviour-based control techniques. While the mechanical engineering and low-level 
sensory-motor coordination and control aspects of Cog were widely agreed to be novel 
innovations (e.g., Williamson, 1999), successful demonstration of higher-level cognitive functions 
was somewhat more elusive. One insight of the Cog project was the significance of social 
interactions between humans and humanoid robots, an issue subsequently studied in more depth 
using the Kismet “socially expressive” robot head developed by one of Brooks’ PhD students 
(Breazeal, 2002). The lack of social ability in Cog led to the initiation of research on behaviour-
based humanoid robots as models for the diagnosis and quantification of social development 
disorders such as autism (Scassellati, 2000). Futhermore, although Kismet was developed for 
principled scientific study of human-robot social interaction, it clearly has potential applications in 
creating animatronic automata for entertainment purposes. 
 
Behavior-based physical robots with animal-like capabilities for autonomous action and survival 
have many obvious applications in areas such as hazardous environments (including battlefields), 
industrial automation, domestic cleaning and security, and in the entertainment and leisure 
industries. Behavior-based robots for all these applications are available commercially from 
Brooks’s company iRobot (www.irobot.com).  
 
Robot models may also act as physical simulations of real creatures, used to test scientific 
hypotheses concerning the organisation of a real animal’s sensory-motor control system (i.e. its 
nervous system), as in the work of Franceschini et al. (1992), Srinivisan et al. (1997, 1998), or Webb 
(2000, 2002, 2003). In addition to using humanoid socially expressive robots for the exploration of 
social development disorders such autism, autonomous biologically-inspired non-humanoid 
robots for the remedial therapeutic treatment of autistic children are currently under development 
(Dautenhahn et al., 2002). Furthermore, biologically-inspired control systems have recently been 
developed for “intelligent” prosthetic limbs and other assistive robotic technologies; most notably 
at the MIT Leg Lab (www.ai.mit.edu/projects/leglab). 
 
The journals Autonomous Robots (published by Kluwer since 1994) and Robotics and Autonomous 
Systems (published by Elsevier/North-Holland since 1985) are good sources for current work in all 
approaches to the development of autonomous robots. The recent collection edited by Webb & 
Consi (2001) focuses on the role of biologically-inspired robots used as scientific tools for 
biologists, while Arkin’s (1998) text provides a thorough overview of biological inspiration in 
robotics for engineering purposes.  
 
Many academic biologically-inspired robot researchers in the UK and in mainland Europe 
perform their research using the miniature Khepera robot platform, manufactured in Switzerland 
by K-Team (www.k-team.com). This wheeled robot has two independent drive motors, on-board 
batteries, an array of eight paired infra-red reflectance emitter-detector sensors, and a powerful 
single-chip processor with associated memory to which control programs can be downloaded for 
autonomous running, all in a compact package that is approximately the size of a small tin of 
tuna-fish. Although a real physical entity, there is a view among autonomous robotics researchers 
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(especially in the USA) that Khepera is best considered as a physical simulation of a real robot, as its 
miniaturized format severely limits the range of environments in which it can operate. 
 

3.1.2 Software Agents 
 

Research exploring BICAS approaches to the creation of autonomous agents that exist purely in 
software has the advantage of requiring no expenditure on the construction and maintenance of 
real physical robots. If the interactions of a real robot and its environment can be accurately 
simulated in software, this is an obvious advantage. However, there is a constant (and often 
seriously under-appreciated) danger of working with simulations: if the simulation has been 
poorly verified (or not verified at all) then there is the possibility that the simulation does not 
faithfully model the real world system that it is intended to represent, and hence that the results 
from the simulation study will not be replicable in the real world. This danger is heightened when 
the agent is adaptive, as the adaptation mechanisms (e.g., learning in a neural network, or the use 
of a genetic algorithm to tune the design of the agent) may exploit flaws in the simulation, and this 
may go undetected. One of the biggest computational costs in creating accurate simulations of 
real-world robots (and their real-world environments) are those costs associated with simulating 
the physics of mechanics and kinematics and dynamics in sensing and in acting (i.e. simulating the 
sampling of the ambient optic array by a video camera, or simulating the results of torque being 
applied by a motor). A number of independent third-party “middleware” software suppliers have 
developed general-purpose “physics engine” software libraries that can save much time and 
money in development of accurate simulations. Leading suppliers in this field are MathEngine 
(www.mathengine.com), Havok (www.havok.com), and Criterion Software (www.csl.com).    
 
Despite the potential heavy computational cost of simulating phenomena that “come for free” 
when working with real robots, studies of simulated agents allow for rich streams of data to be 
collected, data that it may be impracticable or impossible to gather from a physical robot. Robot 
simulations also allow studies of failure modes that could be prohibitively expensive when 
working with real robots. For example, when developing flying-robot unmanned air vehicles 
(UAVs), many real-world failure modes will involve the loss (destruction) of the UAV, and a 
simulated crash is a much less costly event. A number of research teams have worked with well-
validated simulations of real robots, where the lessons learnt in simulation have been 
demonstrated to be transferable to the real system. One notable body of work in this area was 
conducted by Jakobi (1997) for his PhD studies at Sussex. Jakobi developed a principled 
methodology for radically simplifying the computational cost of simulating agent-environment 
interactions, albeit one that is primarily applicable where those interactions are themselves simple: 
for realistically complex or dynamically varying interactions, significantly more work is required 
to establish how best to make computational savings in the simulation. K-Team offer a popular 
software simulator for evaluating Khepera control programs, and there exist a number of 
independent Khepera simulators (e.g. Jakobi et al., 1995).  
 
However, not all software agents are accurate models of physical robots: many software agents of 
interest have no need to accurately model real-world robots, or even real-world physics. It is 
reasonable to talk of non-physically-accurate software agents in two broad classes: abstract 
scientific agent-based models, and commercial engineering applications.  
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Agent-based models for scientific purposes are no less rigorous than simulated robot models, but 
they eliminate major computational costs by abstracting away from levels of analysis where 
detailed and accurate models of physical interaction are at all relevant. This is often allowable in 
cases where collective behaviour is the primary object of study. For example, in collective robotics, 
it is an item of faith that some form of inter-agent communication is useful for coordination among 
the group of agents. Many interesting but different forms of communication, or different 
constraints on the space of communicative behaviours, can in principle be explored in simulations 
where the software agents inhabit a world with minimally simple “laws of physics”. For example, 
a limited vocabulary of communicative utterances (grunts) could be modelled as simply emitting 
one of a small number of grunt-types, which are heard instantly by all nearby agents, without 
modelling any of the details of sound production, or sound-wave propagation in air, or auditory 
sensing of sound waves. Exactly this approach has proved very successful in the simulation-based 
scientific study of the development or evolution of a number of communication systems, including 
the evolution of human language use (McLennan & Burghardt, 1994; Noble, 2000; Noble et al., 
2001; Kirby, 2001). Two notable UK research clusters in this area are the BioSystems group at the 
Informatics Research Institute at the University of Leeds (www.scs.leeds.ac.uk/research/inf); and 
The Language Evolution and Computation group at Edinburgh (www.ling.ed.ac.uk/lec).  

 
One very constrained form of inter-agent communication occurs in microeconomics, where 
traders interact within auction markets: i.e., buyers and sellers communicate by signalling prices 
of bids and offers. These and other abstract artificial economic systems have also been studied 
with some success using minimal simulation techniques (e.g., Epstein & Axtell, 1996); in the UK 
the use of agent-based simulations in economics and the social sciences has been pioneered by 
Gilbert’s team at Surrey (www.soc.surrey.ac.uk/research/cress).   
 
Returning to the issue of abstracting away from accurate simulation of real-world physics, there 
are sound scientific models of agents moving over some area of space that pay little or no attention 
to modelling the physics of movement. For instance, a country-scale model of traffic flows across a 
highway network gains nothing by accurately simulating the physics of each car’s individual 
movement, provided that the abstractions in the model preserve a representation of phenomena 
important at a higher level, such as the fact that if one car hits another, both are likely to stop and 
(at least partially) block the road. Agent-based simulations of human activity have found 
increasing use over the last decade in health informatics applications (such as epidemiology and 
the associated prediction of healthcare demand for planning purposes) and in geographic 
information systems applications (such as those used to predict the spatial growth and spread of a 
city, and the effect that growth has on natural resources). The use of complex systems thinking in 
academic schools of business and management has also grown steadily over the past decade, and 
in America both the Santa Fe Institute (www.santafe.edu) and the New England Complex Systems 
Institute (www.necsi.org) appear to generate sizeable revenue from their offerings of business 
seminars and consultancies. In the UK, complex adaptive systems research applied to the sphere 
of business and management is well represented by the Complex Adaptive Systems Group at 
Oxford University’s Said Business School, by the Complexity Research Programme at the London 
School of Economics, and by NEXSUS, the Complex Systems Management Centre at Cranfield 
University School of Management.       
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There are many potential commercial or applied-engineering uses of autonomous software agents, 
but those actually deployed and making money are more rare. Currently one of the most lucrative 
markets is computer-based entertainment, where BICAS-type software agents have been used in 
computer games (e.g. Maes, 1995; Cliff & Grand, 1999) and in the animation of computer-
generated characters for Hollywood movies (e.g. Reynolds’ (1987) Boids algorithm was used for 
animating stampeding herds of animals in Disney’s feature The Lion King). In recent years, global 
revenues from computer games have consistently exceeded global revenues from Hollywood 
movies, and the production costs of main-title computer games now routinely match those of 
medium-budget movies. A recent huge commercial success involving a computer-game 
application of simulated human agents is the The Sims series of games produced by Maxis 
(http://thesims.ea.com/), in which the user creates a number of human-like agents, designs their 
home, and then guides their relationships and careers. More abstract computer games, such as the 
perennially popular SimCity series of computer games (also produced by Maxis) in which the 
player takes the role of town planner and mayor for an abstract simulation model of a city, can 
also be classed as BICAS entertainment applications. In a style similar to these models developed 
for entertainment, commercial scientific modelling of real-world systems has recently turned to 
using autonomous software-agent techniques, for the predictive simulation of real-world events or 
scenarios. Examples include training police strategists in the prevention, containment, and control 
of crowds of rioters; or using demographic data and spatial geographic information models to 
predict the effects on revenue stream of relocating a factory or choosing a specific site for a new 
superstore. Prominent commercial companies in this space include the UK’s GMAP 
(www.gmap.co.uk) and the US’s Bios Group (www.biosgroup.com), who both offer, at various 
levels of abstraction, agent-based models of humans interacting in some space that represents a 
real-world geography or corporate organization, that can be used in management planning and 
training applications. Again, in such simulations, the small-scale interactions compound to give 
large-scale overall activity that is not readily predictable in advance.  
 
However, not all software autonomous agents are designed to interact with a simulated 
environment that is intended to represent some real-world situation (or a realistically plausible 
but imaginary world, as is more often used in entertainment applications). Many researchers have 
studied the development of autonomous software agents intended to coordinate their perception 
and action in environments that are abstract “cyber-spaces”, typically formed from a number of 
dynamic data-streams. One potential application area is for individual personalisable software 
agents that are instructed by a user to do that user’s business on e-commerce sites such as online 
exchanges or auctions, simultaneously monitoring the bids and offers in multiple auctions so as to 
get the best deal; or possibly also so as to arbitrage across those auctions. Such an agent could 
potentially be simultaneously active in tens or hundreds of different auctions, where those 
auctions do not necessarily all operate according to the same rules and protocols. This is an 
application area recently explored by Byde, Preist, & Jennings (2002), albeit not using BICAS 
techniques. For several years, developing software agents for autonomous automated trading on 
the international financial markets has been a research topic pursued by a number of academic 
researchers, but the take-up of such technology for live applications by investment banks and 
financial exchanges appears to be very poor. Solid data on successfully fielded applications in 
financial trading are notoriously sparse, because the developer of any consistently profitable 
automated-trading method (agent-based or otherwise) has a manifest vested interest in keeping 
very quiet about that success, at least until they have banked enough money to retire comfortably. 
For reviews of BICAS-oriented approaches to the engineering design of trading agents, see (Cliff & 
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Bruten, 1999; and Tesfatsion, 2002). Prominent international research groups with a strong interest 
in artificial autonomous agents for business and e-commerce include academic groups at the MIT 
Media Lab and at Michigan University in the US, at Liverpool and Southampton Universities in 
the UK; at major industrial research labs such as IBM in New York State, and Hewlett-Packard 
Labs in Bristol UK; along with smaller commercial enterprises such as Frictionless Commerce 
(www.frictionless.com) in the US and LostWax (www.lostwax.com) in the UK. It is perhaps worth 
noting that in many of these groups the desire for raw profit typically takes a much higher 
precedence than any considerations of biological verisimilitude.  
 
It has long been known from studies in experimental economics (e.g. Smith, 1962) that when 
groups of human traders come together in an appropriate free-market environment, the 
transaction-prices in the market can rapidly and reliably converge on the market’s theoretical 
equilibrium price. This is the price at which the quantity supplied by the population of sellers best 
matches the quantity demanded by the population of buyers, and so represents an optimal 
allocation of those scarce resources that are supplied by the sellers and that are demanded by the 
buyers. This view of real-world free-market economies as resource allocation mechanisms is 
appealing because they are typically asynchronous and decentralised (in particular, they do not 
require a centralised auctioneer to orchestrate proceedings). Hence, they offer another metaphor 
from the natural world that can be used to influence the engineering design of distributed and 
decentralised systems where scarce resources are demanded by some population of consumers. 
For instance, in a networked computer facility, the scarce resources demanded by the users are 
likely to include processor time, disk space, and network bandwidth. If autonomous software 
agents are attached to each network resource, acting as sellers of the resource, and if autonomous 
software agents are also associated with each user’s request for a job to be processed, then the 
agents can negotiate prices by, for instance, engaging in an auction. The intent is that at times of 
high demand the price of some of the facility’s resources will rise, making them less attractive to 
some users, who hold off from consuming those resources until a period of reduced demand, 
during which the price lowers. This dynamic and decentralised market-based approach to 
computer load-balancing is one instance of a new approach to robustly solving dynamic resource-
allocation problems, an approach known as Market-Based Control (MBC). Much of the groundwork 
for MBC was laid in the collection of papers edited by Huberman (1988), who pioneered MBC 
approaches while a researcher at Xerox PARC. More recently, Clearwater’s (1996) collection 
includes accounts of a number of successful MBC systems, including distributed computer system 
load-balancing; industrial job-shop scheduling; and office-block air-conditioning management. 
Research groups with significant activities or investment in MBC include Southampton University 
and Hewlett-Packard Labs Bristol in the UK, and groups at the University of Michigan, University 
of Southern California, IBM T.J. Watson Research Labs, and Hewlett-Packard Labs Palo Alto in the 
USA. 
     

3.2 Future Research Issues and Application Areas 
  
Experiences to date indicate that for any artificial autonomous agent, robotic or virtual, parallel 
distributed processing architectures (such as artificial neural networks) offer many advantages 
over centralised sequential control programs. Experiences to date also demonstrate that purely 
manual design of such processing architectures is extremely difficult, because traditional 
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engineering design methodologies are not well-suited to the creation of asynchronous distributed 
networks of processors intended to operate without central control. Thus, the use of automated 
adaptation techniques, both within the lifetime of an agent and also over successive evolving 
generations of agents, remains the most promising approach to creating processing architectures. 
For this reason, biological metaphors such as adaptive artificial neural networks, and evolutionary 
computation techniques such as genetic algorithms are likely to remain strong influences in future 
BICAS research.       
 
As the number of individual processing units (e.g. artificial neurons, or behaviour-generating 
modules) in an agent increases, it becomes increasingly difficult to specify an appropriate 
connectivity between the components in advance, and also to reconfigure the connectivity to 
account for component failure or malfunction. For this reason, ideas from developmental biology 
are likely to become more influential, as artificial autonomous agents undergo some kind of 
embryological morphogenesis process. The Amorphous Computing team at MIT produced a review 
of their pioneering work in this area (Abelson et al., 2001).   
 
Similar issues arise when using evolutionary optimisation techniques such as genetic algorithms 
(GAs) for semi-automated design of autonomous agent architectures. The space of possible 
genotypes in the system defines a space of possible designs to be explored. This definition is often 
made implicitly, via the specification of how the “agent genotype” genetic encodings operated on 
by the GA are interpreted as “agent phenotypes” in the evaluation of the genotype’s “fitness” 
value. Although past research has demonstrated many successful applications of GAs in the 
design both of robotic and software autonomous agents, the design of appropriate genetic 
encodings (and their associated mappings onto agent phenotypes via a morphogenesis process) 
and of productive fitness evaluation functions remains an ad hoc art, rather than an operationalised 
engineering discipline. This has long been recognised by GA-agent practitioners, but no clear 
solutions are yet in sight.  
 
One final issue that is starting to cause some concern among practitioners and sympathetic 
observers of BICAS autonomous agent research is the relatively slow rate of increase in the desired 
or intended cognitive complexity of the autonomous agents studied; whether GA-evolved or 
hand-designed. As it is now over 15 years since the publication of Brooks’ papers that established 
the field of biologically-inspired behaviour-based systems, convincing excuses for not tackling 
more cognitively challenging problems than navigating an environment while avoiding collisions 
can no longer be based on appeals to the relative youth of the approach. The fear is that the BICAS 
approach is reaching an impasse similar to the one that occurred in traditional logic-based top-
down AI around the time that Brooks wrote his seminal papers. One response to this is that it is a 
fear based on impatience and ignorance, symptomatic of failing to appreciate the inherent 
difficulty of creating artificial systems that can attain the cognitive complexity needed for even 
simple, restricted, task domains and environments. The counter to this response is that it is exactly 
the excuse made by practitioners of logic-based top-down AI.  
 
While it is possible that economic constraints force researchers to employ robot platforms that are 
ill-suited to (or simply incapable of) use in studying more cognitively complex behaviours, 
experiences in humanoid robotics research seem to indicate that possession of sophisticated robot 
hardware is no panacea. Support for this hypothesis comes from the observation that the research 
team most actively trying to accelerate the cognitive complexity of tasks studied within BICAS-
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agent research are using abstract idealised simulation studies (Beer, 1996, 2000), despite having 
previously worked with advanced robotic hardware.        
  
Turning to potential lucrative applications of BICAS cognitive systems research, the continued 
development of behavior-based robots for niche applications, such as those pioneered by Brooks’s 
company iRobot, seem set to continue, as does the use of robots as models for furthering our 
scientific understanding of cognition in animals (including us human animals).  In the next decade 
or so, scientific applications of software-agent techniques may offer genuinely predictive 
computer-simulation models of a simple invertebrates (perhaps C. elegans; less possibly D. 
melanogaster, but see Hamahashi & Kitano, 1998), allowing accurate studies in silico of 
morphogenesis and development processes, and lifetime adaptation/habituation, and the 
interaction between complete sensory and motor systems. 
 
However, in the immediate future the most promising applications for biologically-inspired 
software agents appear to remain in entertainment and leisure software. It does not require a 
crystal ball to predict that, very soon, “live” but entirely computer-generated versions of some 
sports will become available over internet broadband and/or broadcast TV and/or as a mobile 
phone handset content source; where the participants in the sports (e.g. soccer players, race-
horses, car drivers, or robot warriors) are synthetic agents, possibly with BICAS architectures. 
These agents are trained and/or bred (evolved) by individual users/players/viewers (or networked 
syndicates of users/players/viewers) on their desktop PCs. The funding model would be based on 
income from online gambling; from provision of cheap “filler” content to TV broadcasters; from 
virtual track-side/pitch-side advertising hoardings; and from premium-rate phone lines used to 
provide a back-channel from viewers/participants into the broadcast. A clear precursor to this 
development is the iRace virtual horse-racing system planned as a joint venture in the UK by 
Telewest and VIS Entertainment, to be broadcast on Sky Digital TV: see www.irace.com.  
 
Taking a slightly longer view, it seems plausible that stable market-based control systems, 
populated entirely by artificial agents, could be used for resource allocation in clustered compute 
facilities and potentially also in national GRID computer networks. It seems perfectly plausible 
that as federated networks of warehoused central computing facilities, housing many tens of 
thousands of server machines (all connected on an ultra-high-bandwidth network — providing 
what is referred to by IBM as “computing on demand” and by Hewlett-Packard as “utility data 
centres”) come on-stream, they will incorporate BICAS-style “autonomic” or “adaptive 
infrastructure” technologies that provide self-healing resilience to load fluctuations, to component 
failures, and to attack by computer viruses and worms; and possibly also with market-based 
control for load-balancing and thermal resource management. 
 
It also seems possible that, within the next decade, small-scale live trials of the first online 
international financial markets to be populated (at the point of execution) entirely by artificial 
autonomous trader-agents, might be operated by smaller “boutique” exchanges in major financial 
centres such as London and New York.  
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