Jump to content United States-English
HP.com Home Products and Services Support and Drivers Solutions How to Buy
» Contact HP

hp.com home

Technical Reports

printable version

HP Labs

» Research
» News and events
» Technical reports
» About HP Labs
» Careers @ HP Labs
» People
» Worldwide sites
» Downloads
Content starts here

Click here for full text: Postscript PDF

Cryptographic techniques for privacy-preserving data mining

Pinkas, Benny


Keyword(s): cryptography; privacy; data mining

Abstract: Research in secure distributed computation, which was done as part of a larger body of research in the theory of cryptography, has achieved remarkable results. It was shown that non-trusting parties can jointly compute functions of their different inputs while ensuring that no party learns anything but the defined output of the function. These results were shown using generic constructions that can be applied to any function that has an efficient representation as a circuit. We describe these results, discuss their efficiency, and demonstrate their relevance to privacy preserving computation of data mining algorithms. We also show examples of secure computation of data mining algorithms that use these generic constructions. Notes: To be published in SIGKDD Explorations, Volume 4, Issue 2

14 Pages

Back to Index

»Technical Reports

» 2009
» 2008
» 2007
» 2006
» 2005
» 2004
» 2003
» 2002
» 2001
» 2000
» 1990 - 1999

Heritage Technical Reports

» Compaq & DEC Technical Reports
» Tandem Technical Reports
Privacy statement Using this site means you accept its terms Feedback to HP Labs
© 2009 Hewlett-Packard Development Company, L.P.