Jump to content United States-English
HP.com Home Products and Services Support and Drivers Solutions How to Buy
» Contact HP

HP.com home

Technical Reports


HP Labs

» Research
» News and events
» Technical reports
» About HP Labs
» Careers @ HP Labs
» People
» Worldwide sites
» Downloads
Content starts here

Click here for full text: PDF

Reducing the Cost of Protein Identifications from Mass Spectrometry Databases

Logan, B.; Kontothanassis, L.; Goddeau, D.; Moreno, P.J.; Hookway, R.; Sarracino, D.


Keyword(s): mass spectrometry; machine learning; workflow management; noise filtering

Abstract: We present two techniques to improve the computational efficiency of protein discovery from mass spectrometry databases: noise filtering and hierarchical searching. Our approaches are orthogonal to existing algorithms and are based on the observation that typical mass spectrometry data contains a large amount of noise that can lead to wasteful computation. Our first improvement uses standard machine learning techniques with novel feature vectors derived from the mass spectra to identify and filter the noisy spectra. We demonstrate this approach results in computational gains of around 38% with less than 10% loss of peptides. Additionally we present a hierarchical searching scheme in which most samples are matched against a small database at low computational cost, leaving only a small number of samples to be searched against larger databases. Combining this scheme with the machine learning filters leads to a further performance improvement of 3%. Notes: Copyright IEEE. To be published in and presented at the IEEE Engineering in Medicine and Biology Society Conference (EMBS), 1-5 September 2004, San Francisco, CA

6 Pages

Back to Index

»Technical Reports

» 2009
» 2008
» 2007
» 2006
» 2005
» 2004
» 2003
» 2002
» 2001
» 2000
» 1990 - 1999

Heritage Technical Reports

» Compaq & DEC Technical Reports
» Tandem Technical Reports
Printable version
Privacy statement Using this site means you accept its terms Feedback to HP Labs
© 2009 Hewlett-Packard Development Company, L.P.