Technical Reports


Click here for full text: PDF

Real-time Upper-body Human Pose Estimation using a Depth Camera

Jain, Himanshu Prakash; Subramanian, Anbumani
HP Laboratories


Keyword(s): Haar cascade based detection, template matching, weighted distance transform and pose estimation

Abstract: Automatic detection and pose estimation of humans is an important task in Human- Computer Interaction (HCI), user interaction and event analysis. This paper presents a model based approach for detecting and estimating human pose by fusing depth and RGB color data from monocular view. The proposed system uses Haar cascade based detection and template matching to perform tracking of the most reliably detectable parts namely, head and torso. A stick figure model is used to represent the detected body parts. Then, the fitting is performed independently for each limb, using the weighted distance transform map. The fact that each limb is fitted independently speeds-up the fitting process and makes it robust, avoiding the combinatorial complexity problems that are common with these types of methods. The output is a stick figure model consistent with the pose of the person in the given input image. The algorithm works in real-time and is fully automatic and can detect multiple non- intersecting people.

10 Pages

External Posting Date: November 21, 2010 [Fulltext]. Approved for External Publication
Internal Posting Date: November 21, 2010 [Fulltext]

Back to Index