Technical Reports

HPL-2012-138

Click here for full text: PDF

Learning Print Artifact Detectors

Nachlieli, Hila; Kogan, Hadas; Morad, Awad; Shaked, Doron; Shiffman, Smadar;
HP Laboratories

HPL-2012-138

Keyword(s): machine learning; print defect detection; print inspection;

Abstract: An important aspect of image and print quality is the existence of artifacts, such as compression or print artifacts. A general perceptual masking model, that describes the perceptual severity of artifacts on general background, could have been used to extract specific artifact detectors. However, currently general models are not mature enough to provide print artifact detectors for commercial print quality control application. Consequently we propose to employ machine learning techniques to learn a specific model for each print artifact based on a relevant set of features. We used the approach to develop two print artifact detectors. While the proposed approach was developed for print quality purpose, the method is general and can be used for learning automatic evaluators for image defects and quality degradation as well.

5 Pages

External Posting Date: June 28, 2012 [Fulltext]. Approved for External Publication
Internal Posting Date: June 28, 2012 [Fulltext]

Back to Index