
HP Labs Technical Reports
Click here for full text:
Inverse Halftoning and Kernel Estimation for Error Diffusion
Wong, Ping Wah
HPL9392
Keyword(s):
Abstract: Two different approaches in the inverse halftoning of error diffused images are considered. The first approach uses linear filtering and statistical smoothing that reconstructs a gray scale image from a given error diffused image. The second approach can be viewed as a projection operation, where one assumes the error diffused image. The second approach can be viewed as a projection operation, where one assumes the error diffusion kernel is known, and finds a gray scale image that will be haltoned into the same binary image. Two projection algorithms, viz., minimum mean square error (MMMSE) projection and maximum a posteriori probability (MAP) projection, that differ on the way an inverse quantization step is performed, are developed. Among the filtering and the two projection algorithms, MAP projection provides the best performance for inverse halftoning. Using techniques from adaptive signal processing, we suggest a method for estimating the error diffusion kernel from the given halftone. This means that the projection algorithms can be applied in the inverse halftoning of any error diffused image without requiring any a priori information on the error diffusion kernel. It is shown that the kernel estimation algorithm combined with MAP projection provide the same performance in inverse halftoning compared to the case where the error diffusion kernel is known.
Back to Index
