HP Labs Technical Reports
Click here for full text:
Energy Dependent Schrodinger Operators and Complex Hamiltonian Systems on Riemann Surfaces
Alber, Mark S.; Luther, Gregory G.; Marsden, Jerrold E.
HPLBRIMS9620
Keyword(s): energydependent; Schrodinger operator; semiclassical integrable; evolution equation; monodromy; complex WICB
Abstract: We use socalled energy dependent Shrodinger operators to establish a link between special classes of solutions of Ncomponent systems of evolution equations and finite dimensional Hamiltonian systems on the moduli spaces of Riemann surfaces. We also investigate the phase space geometry of these Hamiltonian systems and introduce deformations of the level sets associated to conserved quantities, which results in a new class of solutions with monodromy for Ncomponent systems of pde's. After constructing a variety of mechanical systems related to the spatial flows of nonlinear evolution equations, we investigate their semiclassical limits. In particular, we obtain semiclassical asymptotics for the Bloch eigenfunctions of the energy dependent Schrodinger operators, which is of importance in investigating zerodispersion limits of Ncomponent systems of pde's.
Back to Index
