Systems of Systems

() packaro

as Communicating Structures

Vadim Kotov

Computer Systems Laboratory

HPL-97-124
October, 1997

E-mail: kotov@hpl.hp.com

concurrent
distributed systems,
systems of systems,
Communicating
Structures,
object-oriented
modeling,
visualization

Internal Accession Date Only

By Systems of Systems (SoS) we mean large-scale
concurrent and distributed systems the components of
which are complex systems themselves (e.g. enterprise
intranets). Communicating Structures are
hierarchical structures that represent SoS in a
uniform, systematic way as composition of a small
number of basic system objects.

Communicating Structures are focused on modeling of
SoS the performance of which largely depends on
communication, data traffic and data placement.
The systems components are represented as nodes.
The nodes have memory that may contain items.
Nets are sets of links that connect the nodes. The
items move from a node to a node along links. All
these objects may have hierarchical structure.

CSL is a C++ based library and an object-oriented core
environment for the modeling and analysis of SoS in
the framework of Communicating Structures. It
includes both simulation and analytical (queueing
analysis) options as well as GUI for the model
construction and visualization tools for analysis of the
modeling results.

A case study in which CSL was used to analyze a global
distributed computing environment is presented.

) Copyright Hewlett-Packard Company 1997

1 INTRODUCTION

Hardware, software, network, and application systems are merging into integrated informa-
tion systems. As a result, the variety of feasible integrated system architectures and their
complexity is rapidly increasing. Such systems become very large and very complex systems
which are, in fact, Systems of Systems as their components are themselves complex systems.

Some examples of today’s Systems of Systems (SoS) are

- multiprocessor servers and clusters;

- enterprise intranets supporting common business processes;
- distributed global mission-critical applications;

- distributed control systems;

- distributed design/manufacturing systems;

- World-Wide Web;

- their combinations.

Typical SoS have to satisfy many strict requirements, among which are cost effectiveness
(SoS are often unique and very expensive); responsiveness; throughput; scalability and flex-
ibility; availability; maintainability; reliability, fault tolerance, and recoverability; data and
application integrity; security.

Many of these requirements are conflicting. Only modeling can help to find the best com-
promise solutions. The competitive market does not give much time for experimenting with
prototypes. There is a clear need for design methods, techniques, and tools that allow design-
ers to construct and analyze quickly and reliably various architectural hypothesis and evaluate
them against a wide spectrum of desired system properties.

However, SoS represent a challenge for the modeling and analysis as the solution space is
huge and complex. Modeling methods and tools typically used in object-oriented analysis and
design (for example, UML [Fow97], statecharts [Har97]) are biased to the specification aspects
as their main goal is to support the rigorous and efficient design and development process.
For SoS, the main problem is to identify satisfactory solutions among a sea of solutions. SoS
are also too complex and divers to fit into formal semantics Procrustean frames.

To meet this challenge, the SoS models should be as simple as possible without, of course,
loosing those features which are important for the system validation. The best way to simplify
the models is to identify

- objectives of the modeling and those global system features which are relevant to those
objectives;

- a small number of concepts that are common for most of the SoS and in which terms
the modeling objectives can be adequately specified.

2 COMMUNICATING STRUCTURES

Here we propose to view large information systems in a uniform and systematic way as Com-
municating Structures in which main activities are related to coordination of data traffic and
data placement. The modeling objectives are

- evaluation of the system performance in terms of average latencies, throughput, utiliza-
tion, sensitivity to variation of the system and workload parameters;

- identification of congestions, bottlenecks, non-fairness and unpremeditated behavior.

Such a view emphasizes those system features and components that generate and manage the
data traffic.

This paper presents the Communicating Structures Library (CSL), an implementation of the
Communicating Structures as a core environment for the modeling and synthesis of SoS. In its
most general form, a Communicating Structure is a hierarchical and concurrent structure that
represents the SoS components and communication between them. The system components
are represented simply as nodes. The nodes have memory that may contain items. Nets
are sets of links that connect the nodes. The items are generated in some nodes and move
from node to node along links concurrently and with some delay. Items may be modified
within nodes. The item traffic models the data traffic in the system which is represented as
a Communicating Structure.

Items, nodes, memories, and nets may be elementary or may have some structure. For exam-
ple, items may represent simple data such as frames, packets, as well as complex messages and
large chunks of data. The nodes may represent relatively small units such processors, mem-
ories, I/O and storage units, or systems such as multiprocessors, computer clusters, servers,
networks, etc. Nets may represent simple point-to-point links as well as busses, crossbars,
interconnects, cascaded switches, communication lines and other data transfer facilities.

Thus, the items, nodes, memories and nets are Communicating Structures objects which are
either simple or hierarchical. The objects may be assigned different attributes (numbers,
variables, functions, and processes) which

- define quantitative parameters such as the number of subobjects in an object; the mem-
ory capacity, delays, the current number of items in a memory, time constraints, etc.;

- locate an object in the model hierarchy such as, the object’s name, its relative address
in the hierarchy tree;

- generate and control the item traffic;
- change behavior of objects;

- provide an input data for objects and register their behavior and for output and further
analysis;

- provide data and functions for analytical modeling.

SoS are too complex and divers to fit into a unique formal semantics Procrustean frame.
Instead, Communicating Structures provide default semantics for basic objects, functions and
processes which may be changed by a user. This means that Communicating Structures
provide a common base for future more specific and, if required, more rigorous “dialects”
adjusted for particular tasks and level of detail of SoS analysis and construction.

In general, any information that is relevant to a specific study of a modeled system may be
easily added to a Communicating Structure describing the system. Communicating Structures
allow easy abstraction/refinement modifications in order to be used at different levels of the
specification and modeling detail.

CSL is accumulating generic or parameterized CSL objects, functions, and processes that may

be quickly assembled into a particular model and tuned for a specific case study using input
parameters.

3 C++/CSIM CONSTRUCTS

The CSL hierarchy is based on C++ classes and CSL concurrency uses the main structures
of C++/CSIM, a process-oriented discrete-event simulation package [Sch95].

A set of modified CSIM structures is introduced to generate and coordinate concurrent pro-
cesses (see Figure 1). A process is a C++ procedure which executes a create statement. This
statement invokes a new thread that proceeds concurrently with the process that has invoked
it.

P create (“P1”) create(*P2”) -
P1 P2

reserve()

TeTEASED faciiity

send() [~=~~._
...

hold(0.7)

~

“~<.. receivd()

@ hold(7.0) Tt mailbox

fait) @) e— set()

Y event \

Figure 1: CSIM concurrency constructs

There can be several simultaneously active instances of the same process each of which has

its own runtime environment. A process can be in one of four stages: passive (and ready
to start), active, holding (allowing a modeling time to pass), and waiting (for permission to
continue after it has been interrupted).

The mechanisms to organize the interaction between the processes are mailbozes, facilities,
and events.

The CSL class Mailboz is used for interprocess communication. A process can send a message
to a mailbox and receive a message from a mailbox. If a process does a receive operation on
an empty mailbox, it automatically waits until a message is sent to this mailbox. The CSL
Mailbox is augmented by an additional operation em send_with_delay that makes it possible
to send a message to a mailbox with some time delay.

The class Facility models a resource. It contains a single queue and several servers. Only
one process can at a time hold a server after it executes the reserve statement. If there is no
available server, the process waits in the queue until one of the servers is released and there
is no waiting process in the facility queue ahead of this process.

Events are used to synchronize processes. An event is a state variable with two states, occurred
and not occurred, and two queues for waiting processes. One of these queues is for processes
that have executed the wait statement (and are in a waiting stage) and another is for processes
that have executed the queue statement (and also are in the waiting stage). When the event
occurs, by executing the set statement, all waiting processes and only one of the queued
processes are allowed to proceed.

4 THE COMMUNICATING STRUCTURE OBJECTS

Four basic elements of Communicating Structures are items, memory, nets and nodes.

Nodes typically generate, receive, store, forward, and, perhaps, modify data abstractly pre-
sented as items. They store and retrieve items in the node’s memory. Items are "dynamic”
objects which are born, travel and perish. Nets connect the nodes into a Communicating
Structure in which the items travel from source nodes to destination nodes.

All these elements are derived from the common CSL class Object. As all CSL objects may
have a hierarchical structure, the class Object represents tree-like hierarchies with the class
members and functions which help to handle the hierarchy, for example, to select subtrees
and sets of subtrees, to check some properties of trees, to apply functions to objects-subtrees,
etc.

The class Object is derived also from the class Facility. This makes the object to be a
resource for a competition among concurrent processes. The number of servers in the object
is set during the object construction.

A CSL Memory is an object to store items. In the general case, the Memory is a hierarchy
of (sub)memories with the ability to store items at different levels of the hierarchy. The top
memory of the hierarchy is contained in a node. At the bottom of this hierarchy are Locations,
”elementary” memories which hold pointers to stored items. One location is capable of storing
exactly one item.

In the general case, the net inherits a multilevel hierarchy from the class Object. So, a

net may consist of subnets. A "top” net enters into a ”docking” node for which it defines
communication links among the node’s subnodes. So, the constructor of the net contains a
docking node as a potential argument.

At the bottom of this hierarchy are Links, ”elementary” nets each of which connects just a
pair of nodes. Each link delivers items from a from-node to a to-node with link delay which is
either a constant or a function of some of that item’s attributes. The from- and to-nodes are
identified by their pointers. Being derived from the class Object, the link is a resource with
some number of servers which define the maximal number of transfers that may occur along
the link simultaneously.

The main building block of Communicating Structures and CSL models is a node. It contains
a memory and, possibly, subnodes as well as a net with its links connecting subnodes. The
whole model itself is a top level CSL node. The nodes are assigned different functions and
processes which originate and control the items movement in the Communicating Structures
simulation runs. Most of the basic node member functions and processes are virtual and may
be customized by user for specific purposes. The default definitions of these functions provide
some "generic” item traffic which is generated in some subset of nodes and destined for some
subset of nodes with shortest path routing on the way.

To apply the queueing analysis, the CSL nodes is supplied by classes that implement queue
models such as M/M/m or G/G/m. The analytical model of a communicating structure is
built using a network of queue models, this network being derived from the topology of the
strucutre.

5 THE COMMUNICATING PROCESSES

With each node, a main process and a generation process are associated.

When the generation process generates an item, the item is stored in the node’s memory, and
a message is sent to the node’s mailbox in order to activate the node’s main process. This
message contains a pointer to the address of the location in which the item has been stored.

The main_process (see Figure 2) prescribes the node functionality and behavior. (A rectangle
represents a function (procedure), a rounded rectangle represents a CSIM process, a rhombus
is a condition, and a circle is a loop condition.) The process is awakened by a message to the
node mailbox and starts with finding a location in the memory to work on. It may be either
the location indicated in the message or any other location prescribed by the memory access
function.

Then the main process analyzes the destination path of the item stored in this location. If the
destination path is empty, the process completes its work doing actually nothing. Otherwise,
the head of the path is extracted. If it is a pointer to this node and it is the only element of
the path, the transformation procedure is initiated. This function may make some changes
to the item. In particular, the function may change the item’s destination, or make clones
of this item for subsequent spawning into the communicating structure. The transformation
function will almost always be customized, as it actually defines the node’s functionality. The
default version of transformation is an ”empty action”.

After the transformation, the main process either terminates or the transfer procedure is
initiated. The decision to terminate or to transfer is made at the end of the transformation

process
Mailbox

main_process \

node_main
begin_main
transform_condition>
alse
transform
transfer_conditio
¢ true false
transfer
end_main

Figure 2: Main node process

and is signaled in some way. For example by using the memory pointer as in the the default
version of the main process.

The transfer function organizes the transfer of the item (or the item’s copies) to other nodes.
In the default definition, it analyzes the item’s destination path and selects one of the possible
transfer modes: a monotransfer or a multicast, a synchronous or an asynchronous transfer.

6 CSL PARTS KIT

The system parts kit contains sublibraries which accumulate often used system structures,
functions, and processes. Some of these parts are generic, that is, they are used quite often
but are not basic CSL objects or functions. Others may be specialized and often used in
domain specific models.

For example, specific types of memories which are derived from the class Memory are intro-
duced in the KIT.

The class Buffer contains some number of locations that are addressed by an integer index.
One can put an item into a location only if the location is vacant, that is, it does not contain
any item. One can get an item from a location only if the location is not empty, that is it
contains an item. In similar way the classes FIFO, Stack and PriorityQueue are introduced.
These memories are often serve as “control memories” which help to control implicitly the
traffic in Communicating Structures.

In many cases it is convenient to have a node memory with two submemories each of which
hosts a part of the traffic going through the node. For example, one submemory may take care
of the ingoing traffic and another of the outgoing traffic. (In this way one can avoid deadlock
situations.) To support such types of memory, the classes DoubleBuffer and Double FIFO,
DoublePriorityQueue are provided.

Often used topologies are accumulated in the “Nets” part of the CSL PARTS KIT.

Let us consider two sets of nodes which we will refer to as input nodes A and output nodes
B. The input nodes will represent the from-nodes for net links and the output nodes will
represent the to-nodes for net links. These sets may intersect or even be identical. In the
last case, one set A will represent both sides of the transferring activities. Let also N be the
number of input nodes and M be the number of output nodes.

It is convenient to define the topology of connections defined by a simple net using auxiliary
connectivity functions. The connectivity functions are predicates which are valid for some
subsets of integer pair. The first element of each pair is in the range [0, N]; the second
element is in the range [0, M]. There is a link between the i-th and j-th nodes in a connection
defined by some connectivity function if and only if the value the function is true for the pair

(4:9)-

For example, the function alwaysconnected is the predicate which has the value true for any
pair of integers which is in the range. The function parallelconnected is the predicate which
has the value true only for pairs of the type (i,1).

Suppose we want to connect the node sets A and B by links that lead from every node of A
to every node of B. This type of connection is represented by the OneWayMultiBus simple
net. It is formed of the set of links that connect each input node with each output node (a
bipartite graph constructed with the help of the connectivity function alwaysconnected). All
links have the same basic delay. If the the node sets A and B coincide, the net MultiBus is
derived.

The number of servers with which we supply the nets OneWayMultiBus or MultiBus will
define the restrictions on how many items are allowed to be transferred concurrently between
these nodes. If the number of servers is equal to the number of links (this is the default
number of servers), there is no restriction on parallel traffic among the nodes. If, however, we
supply the net with only one server, only one item transfer at a time may occur in the net.

The latter case is represented by the simple net Bus which is derived from the net MultiBus
simply by fixing the number of servers equal to 1. Thus the Bus net is a Communicating
Structures abstraction of real bus-type nets. This abstraction captures the two basic properties
of simple busses: (1) any input point is connected to any output point, and (2) only one item

at a time may be transmitted.

The simple net RightLoop connects nodes in a loop by unidirectional links in such a way that
the i-th node is connected to the ((i—1) mod N)-th node where N is the total number of nodes.
This type of connection is built with the help of the connectivity function rightcyclicshift.

The number of servers in the net defines the number of transfers that may occur simultaneously
in the RightLoop. In the similar way, the simple net LeftLoop is constructed.

Restricting the number of servers to 1, the loop nets may be transformed into ring nets in
which only one transfer may occur simultaneously.

The combination of the RightLoop and LeftLoop makes the Loop which connects any node
with its both left and right neighbors.

Quite complicated restrictions imposed on the item traffic in systems can be expressed through

hierarchy of nets and the default scheme of reserving links and subnets which contains the
links.

6.1 A SoS CASE STUDY

A project of a world-wide distributed system which represents a decentralized computing
environment for a global transportation company has been analyzed using the Communicating
Structures methodology and CSL.

The system does

packages tracing and monitoring (hundreds of millions of transactions per day);

statistics, billing data processing, and decision support ;

customer services (including WWW) ;

- common enterprise business applications.
Three-level hierarchical network of three-tiered computing centers (see Figure 3):

- global Data Centers (DC), several of them;

- regional Processing Centers (PC), tens of them;

- local Operations Centers (OC), tens of thousands of them;
- mission critical, “almost real-time” computing environment;

- cost effectiveness is the dominant requirement;

a client/server computing model;

a publish/subscribe data distribution model.

Figure 3: Three-Tiered computing Center

So, this is a typical SoS and it is specified in the Communicating Structures terms in a natural
way (see Figure 4). The computing centers are CSL nodes of different levels of hierarchy,
the communication lines are links, the functionality of computing centers is modeled by the
functionality of CSL nodes.

Information is distributed and exchanged among centers according to the Publish-Subscribe
paradigm: applications publish data for potential use by other applications and are subscribers
for data published by others.

Point-to-Point dispatch and data brokerage are two alternative models for the implementation
of the Publish-Subscribe methodology (see Figure 5).

The first case represents a spider web of point-to-point interfaces which are ”hard-coded” with
specific languages, platforms, application and data formats. Applications maintain unique
relationships between themselves.

In the second case, point-to-point links are replaced by the publication of common messages
usually in a standard format which are sent to Data Brokers. The latters have the tables of
subscribers for each type of the messages and forward the messages to subscribers.

The task was to evaluate the project with the emphasis on comparison of the two Publish-
Subscribe models.

The constructed CSL model presents the project as a Communicating Structure which con-
tains those and only those system features that influence the message traffic and are important

10

Data Center

Processigg Center

e

Scan Locations ~ Storage Systems Applications

Figure 4: Three Level Network of Processing Center

for the system requirements were satisfied. The model helped to identify bottlenecks and the
system sensitivity to changing parameters (the number of processing centers, bandwidth in
local and global networks, message packaging principles, etc.).

The sensitivity analysis included:

system response on bursty workload;

system scalability;

Data Broker overhead;

message packaging strategy.
Utilization analysis:

- utilization of Data Brokers as a function of workload;

- networks utilization.

The main result of the project validation was the reduction of the proposed three-level system
architecture to two-level architecture. The CSL analysis of the traffic in the system has
shown that if the functions of the second level are redistributed between the top level of
Data Centers and the low level of the Operation Centers then the global traffic becomes less
congested, response time is improving, basic requirements to the system are satisfied and the
overall cost is, of course, dramatically reduced (see Figure 4).

11

Data
Broker

Data
Broker

Data
Broker,

¢) Combination

Figure 5: Publish-Subscribe Models

a) Tree-level architecture a) Two-level architecture

Figure 6: Two-level versus three-level System Architectures

6.2 VISUALIZATION

The huge analysis and design space of SoS requires a special instrumentation to deal with data
collection, workload and test data generation, results collection and analysis, etc. Especially
useful is visualization of the model behavior, visual analysis of results, visual support of the
model debugging and validation. Figure 7 shows a “hot spots” picture of a SoS model with .

Another visualization tool SIMON allows to see and verify the communication between con-
current processes (see Figure 7).

12

Node of Level 0

Node of Level 1

Node of Level 2

Node of Level 3

Figure 7: System Hot Spots

6.3 CONCLUSION

Communicating Structures reduces the complexity of the SoS modeling and analysis, in par-
ticular:

- to simplify construction of SoS models of different levels of detail by using abstrac-
tion/refinement mechanisms;

- to describe parallel processes and their interaction in an object-oriented way speeding-up
the model debugging and increasing the trustworthiness of models;

- to speed up simulation of a large number of concurrent processes;

- to accumulate and reuse prefabricated general-purpose and domain specific modules
(" parts kit”);

13

OverVIEW

9g% (12)

e e (1) T R T
S e (o) IENIAEE IR I e e

LSUNDLSIND (9)
.SUNZ2.SINZ
i 1
.SUN1.SINO ‘ “
.SUNZ. SINT
oo mr

LSUNG . SINT (3] | | | 11l | | ‘

|| || ‘| | |
TV O MY AU AR N A I RO AR A I I AL O EN

- T I|"'|||| | | |
. SUN1 -
R A A AN A AR R A R T A A

Tk L
— O 1 I | | -

TIME {msec)
Figure 8: Communication between Processes

- to generate and analys a larger number of the system configurations and behaviors;

- to provide friendly programming and modeling infrastructure (data generation, collec-
tion, analysis, visualization, etc.).

The current version of CSL has been mostly used for the simulation of SoS because analytical
modeling methods were unapplicable to the SoS under consideration. However, the analytical
methods, if they work for particular types of SoS, may complement the simulation using the
queueing analysis classes associated with the CSL nodes and a network of queues derived from
the topology of a model.

The most interesting extension of CSL that we are going to build is related to the intelligent
browsing of the huge solution spaces for SoS. The goal is not to miss good architectural

14

solutions. This is a sort of system synthesis which relies on combining simulation, analytical
methods, and formal methods.

6.4 Acknoledgement

Lucy Cherkasova and Tom Rokicki coauthored and help to shape the idea of Communicating
Structures. Tom help to implement CSL by contributing his elegant code to the CSL base.
Lucy was the first user of the first version of CSL and feedback from her modeling efforts drove
the further CSL progress. The visualization tool SIMON was developed by Sekhar Sarukkai.

The author would like also to thank Denny Georg and Rajiv Gupta for sharing ideas, encour-
aging discussions, and support.

7 References

[Fow97] UML Distilled. Addison-Wesley, 1997, 180 pp.

[Har97] Harel D., Gery E. Executablre Object Modeling with Statecharts. In Computer , vol.
30, No. 7, July 1997, p. 31-42.

[Sch95] Schwetman, H. Object-oriented simulation modeling with C++/CSIM17. In Proceed-
ings of the 1995 Winter Simulation Conference, Washington, D.C.. ed. C. Alexopoulos,
K. Kang, W. Lilegdon, D. Goldsman, 1995, p. 529 - 533, Washington, D.C.

15

