HP Labs Technical Reports
Click here for full text:
Efficient Arithmetic in GF (2 super n) through Palindromic Representation
Blake, Ian F; Roth, Ron M.; Seroussi, Gadiel
HPL98134
Keyword(s): finite field representation; optimal normal basis; palindromic representation
Abstract: A representation of the field GF(2 super n) for various values of n is described, where the field elements are palindromic polynomials, and the field operations are polynomial addition and multiplication in the ring of polynomials modulo x (super 2n+1)1. This representation can be shown to be equivalent to a field representation of TypeII optimal normal bases. As such, the suggested palindromic representation inherits the advantages of two commonlyused representations of finite fields, namely, the standard (polynomial) representation and the optimal normal basis representation. Modular polynomial multiplication is well suited for software implementations, whereas the optimal normal basis representation admits efficient hardware implementations. Also, the new representation allows for efficient implementation of field inversion in both hardware and software.
3 Pages
Back to Index
