Design Methodologies for the
PA 7100LC Microprocessor

Product features provided in the PA 7100LC are strongly connected to the
methodologies developed to synthesize, place and route, simulate, verify,

and test the processor chip.

by Mick Bass, Terry W. Blanchard, D. Douglas Josephson, Duncan Weir, and Daniel L. Halperin

Engineers who wish to create a leading-edge product with
competitive performance, features, cost, and time to market
are often challenged to create design methodologies that will
enable them to succeed in their task. Decisions about the
features of a product usually have an inseparable impact on
the methodologies used to create, verify, debug, and test the
product.

During the development of the PA 7100LC microprocessor,12
engineers crafted several methodologies that supported the
design decisions that were made throughout the project
and provided the framework for implementing the design
decisions.

This article explores several of these methodologies. For
each methodology, we discuss the design decisions that im-
pacted the methodology, the alternatives that we considered,
and the course that we chose. We discuss the results pro-
duced by each methodology, as well as problems that we
encountered and overcame during each methodology’s de-
velopment and use.

Some of the design decisions that motivated us to develop
new design methodologies for the PA 7100LC are discussed
in the article on page 12. The areas in which we developed
these methodologies include control synthesis, place and
route, production test, processor diagnosability, presilicon
verification, and postsilicon verification.

The resultant methodologies were crucial to our ability to
meet the design goals that we had set for the PA 7100LC.
Taken together, they enabled good decisions leading to a
successful product implementation.

Synthesis and Routing Methodology

The control circuits in any microprocessor typically represent
a major portion of the complexity of the chip. The control
circuits of the chip contain most of the chip’s intelligence. It
is these circuits that direct the rest of the components on the
chip. The operation of the control circuits is similar to the
way operators of complex machines on a factory floor con-
trol the way that those machines behave.

Blocks of control circuitry perform similar jobs, and the na-
ture of these jobs determines the nature of the control
blocks themselves. Control blocks typically implement logic
equations, the outputs of which control some other function
present on the chip. The logic equations implemented by
control blocks tend to be irregular and loosely structured. A

[J Hewlett-Packard Company 1995

necessary characteristic of any control block is for its outputs
to become valid in sufficient time to control its downstream
circuits properly. Like other portions of the chip, control
blocks can have timing paths that limit the overall chip oper-
ating frequency if the blocks are not carefully designed and
implemented.

Another characteristic of blocks that implement control logic
is that they change frequently throughout the design pro-
cess. Experience has shown that a vast majority of bugs are
found in the control blocks, probably because so much of
the chip complexity resides there. We have found that it is
very likely that the last bugs fixed before a chip design is
sent to manufacturing will be in these blocks.

When we were defining the methodology for implementing
the control circuitry for the PA 7100LC, we considered these
general characteristics, as well as specific new requirements
that stemmed from our design goals for the project. The PA
7100LC had new requirements, compared to earlier CPUs, in
the areas of low power dissipation and support of Ippg test-
ing. We knew that the PA 7100LC control would be even
more complex than past CPUs because of its high level of
integration and its superscalar design. To make it easy to
accommodate this new functionality, we wanted to be able to
make the control blocks as small and as flexibly shaped as
possible. Finally, since we were leveraging the design of the
PA 7100LC processor from the PA 7100 processor,34 we
wanted to leverage control equations or control circuitry
from the past design for many of the blocks.

The control of the PA 7100, from which we were leveraging,
is primarily implemented as a programmable logic array
(PLA). Programmable logic arrays have very regular physical
and timing characteristics. The PLA architecture used in the
PA 7100 involves dynamically precharged and pseudo-NMOS
circuits. The outputs of this PLA become true at least one
CPU state after its inputs became valid. The PLA latches all
inputs with respect to a specific fixed clock edge.

PLA Methodology. The methodology used to design PLAs for
the PA 7100 was well developed as were the tools that were
necessary to support it. PLAs were designed in a high-level
language with a syntax reminiscent of the Pascal program-
ming language. In-house tools were available to translate the
high-level source language to optimized Boolean sum-of-
products equations. Other in-house tools were available to

April 1995 Hewlett-Packard Journal 23

use these sum-of-products equations to generate the PLA
artwork (including programming the array).

When the destination circuits could not tolerate the one-state
delay required by the PLA core, we created schematics for
handcrafted standard-cell blocks that could calculate their
outputs in the required time. We then used an in-house
channel router to create artwork for the standard-cell blocks.

The PA 7100 PLA methodology had several advantages. The
PLA design and implementation tools were simple and well-
understood. They provided a turnkey artwork generation
solution from the high-level control equations, which made
it easy to accommodate late changes. Most important, we
already had a high investment in this methodology. We un-
derstood it very well, had all the required tools in place, and
knew we wouldn’t find any surprises.

However, when considered in light of the requirements of
the PA 7100LC, the PLA methodology had several disadvan-
tages. Although the physical structure of a PLA is fixed and
very regular, its fixed shape would lead to difficulty in floor
planning for a chip as highly integrated as the PA 7100LC. We
also knew that PLA implementations of control logic do not
yield optimal circuits with respect to absolute size. PLA cir-
cuits involve both precharged logic and pseudo-NMOS logic,
leading to high power dissipation relative to fully static cir-
cuits. PLA circuits are also incompatible with our Ippg test
methodology, which is described later in this article. Al-
though PLAs can usually guarantee a one-state delay from
input to output, their timing is inflexible. The addition of
hand-designed standard-cell blocks to address this problem
is not only labor-intensive, but also adds complexity to the
overall solution and increases the probability of intro-
ducing bugs in these areas. Also, some types of control logic
cannot be represented compactly in the sum-of-products
form required by the PLA methodology. This logic must then
either be moved into a standard-cell block or redesigned.

New Methodology. Since the disadvantages of the PLA method-
ology would compromise our ability to achieve our design
goals, we began to investigate alternatives. We had some
positive experience with using Synopsys, a commercial syn-
thesis tool, on the floating-point control block of the PA
7100. We began to investigate the potential impact of com-
bining automated synthesis using Synopsys with an over-the-
cell router.t Our investigation of combining the synthesize
and route methodology pointed out the following advan-
tages and disadvantages:

The absolute size of the blocks produced would be smaller
than the blocks produced using either PLAs or channel-
routed blocks. Additionally, the floor plan would be more
flexible than that produced by a PLA, allowing us to parti-
tion the controller so that we could create control blocks that
fit into available area close to the circuits they must control.
We would have to pay more attention to timing because we
would no longer have the regular timing structure of the
PLA to guarantee that state budgets would be satisfied.

The circuits produced would dissipate less power than
corresponding PLA implementations because the synthesize
and route methodology uses fully static circuitry. The circuits
would also be Ippg compatible.

t Over-the-cell routers place and route cells so that there is less need to provide routing
channels between the cells.

24 April 1995 Hewlett-Packard Journal

* We would have to design a new library of standard cells that

would be compatible with the over-the-cell router. We would
also need to design a new set of drivers that would drive
output signals from the standard-cell core to the rest of the
chip and that would be compatible with our production test
design rules. These tasks were very well-defined and we un-
derstood the effort that would be required to complete them.
Of greater concern was the realization that the synthesis
path from the input equations to completed artwork would
be more complex than the corresponding path in the PLA
methodology and would be almost completely new.

With the PLA methodology, we knew that there would be
no surprises. Incorporating this new technology would re-
move much of that certainty. However, the benefits clearly
outweighed the costs. We felt that we couldn’t afford to com-
promise our power, area, timing, and test goals by continu-
ing with the PLA methodology.

We overcame several issues while making the new method-
ology work for us. We leveraged the source code of many of
the control blocks from the PA 7100, all of which were spe-
cified in the PLA source language. We were able to leverage
existing PLA sources directly by using the PLA tools to gen-
erate sum-of-product equations in a form that the Synopsys
synthesis tool could understand. Synopsys was then free to
massage the equations into a more optimal form. Source
code development of these leveraged control blocks contin-
ued using the PLA source language, even though we were
using the new methodology for synthesis and route. We de-
veloped control blocks that were new for the PA 7100LC
using the Verilog behavioral description language, which has
a more direct input path to Synopsys.

We chose the Cell3 router from Cadence Systems Inc. to
perform the place and route portion of our new methodol-
ogy. The main issue remaining was how to integrate this
new tool with our other tools. To minimize the number of
costly licenses we needed to purchase and to maximize the
block designers’ productivity, we decided to use our existing
artwork editor as a front end to the router’s floor planning
capability. This approach allowed designers to preplace criti-
cal cells, power nets, and clock nets easily. We developed
new tools that would translate this floor plan into a form that
the Cell3 router could understand. While these techniques
maximized designer productivity and minimized license cost,
we found that it was sometimes difficult to isolate bugs in
the methodology to either our front-end tools or to the Cell3
router itself.

We also discovered that the timing capabilities of the version
of Synopsys that we used were less robust than we had be-
lieved at the beginning of the project. This discovery had
only a minimal impact on blocks that were leveraged from
PLAs because of the regularity in the timing of those blocks.
However, to ensure robust timing on the remaining blocks,
we needed to develop new tools. The need for these unan-
ticipated workaround tools had a negative impact on our
schedule.

As with PLAs, we also found that certain types of circuits do
not map well to the synthesize, place, and route methodol-
ogy. On a large block where we made much use of the timing
flexibility offered by static standard cells, we found that our

[Hewlett-Packard Company 1995

PA 7100LC Processor

Memory and
1/0 Control

Instruction

Floating-Point
Control

Level 1
Instruction
Cache

General System
Connect (GSC)
Bus

DRAMSs <

Memory and
110 Interface

___$___

Instruction

Instruction

Floating-Point
Execution
Unit

Address

Translation
Lookaside
Buffer (TLB)

External
Cache

4__

T
Address |

Integer

I

I

[Execution
Unit1

Integer
Execution

Fig. 1. A simplified block dia-

Interface Data

gram of the PA 7100LC showing
the relationship between the con-

Unit 2

Cache Con-
trol

L

SRAMs

— — — Control Lines

synthesis tools were sometimes unable to produce circuits
that met the timing and area constraints of the block. When-
ever this occurred, we had to redesign the control source so
that the synthesized circuits could meet their physical re-
quirements, or help the tools by hand-designing portions of
the circuit.

We found that on some of the standard-cell blocks leveraged
from the PA 7100, the synthesis tools had difficulty creating
circuits that performed as well as their PA 7100 counterparts.
This difficulty was caused in part by differences in the stan-
dard-cell libraries for the two chips. The PA 7100LC library
had no pseudo-NMOS circuits, which were used quite effec-
tively to meet timing on the PA 7100 (at the expense of
higher power dissipation). The rest of the difference lies in
the fact that, for all its sophistication, automated synthesis is
still no match for carefully hand-designed blocks. Fortu-
nately, our design tools allowed us to hand-design portions
of the block while synthesizing the rest of the block. Although
time-consuming, we chose this approach in cases where the
tool path was unable to provide a satisfactory solution.

The overall results of the methodology we chose were good.
We were able to partition the PA 7100LC’s control functional-
ity into seven primary control blocks. Four of the blocks
control the sequencing and execution of instructions by the
pipeline. The remaining three control blocks control the
memory and I/O subsystem, the cache subsystem, and the
floating-point coprocessor (see Fig. 1). Together, these
seven blocks represent only 13% of the total die area, and
implement nearly all of the control algorithms and proto-
cols used by the PA 7100LC.

[J Hewlett-Packard Company 1995

Instruction
Execution and

Sequencing
Control
(4 Blocks)

A\
3

trol blocks and the other major
blocks in the processor. The in-
struction execution and pipeline
sequencing control block consists
of four separate blocks that are
physically distinct but highly in-
terconnected. Not all of the con-
trol connections on the PA
7100LC are shown in this figure.

Test
Circuits

Even though the PA 7100LC adds integer superscalar execu-
tion and a memory and I/O controller compared to the PA
7100, the area of the control core produced by the new
methodology is about half the area of the PLA core of the PA
7100. The area occupied by the driver stacks in the control
blocks on the two chips is about the same.

The new methodology implemented all of the control blocks
correctly and introduced no functional bugs. The timing
methodology that we had in place by the end of the project
was very effective at identifying problem timing paths before
they made it onto silicon. When we received chips from
manufacturing, we found no problem timing paths in any of
the control blocks that were created using the new method-

ology.

Verification Methodology

One of the most prominent design goals for the PA 7100LC
was to meet the schedule required to enable a very steep
production ramp. This goal, coupled with Hewlett-Packard’s
commitment to quality, meant that we needed to have in
place a solid plan to verify the correctness of the chip at all
stages of its design.

Our design goals and the knowledge that the PA 71000LC
was to be the most highly integrated CPU that HP had ever
created led us to focus early on the methodology that we

April 1995 Hewlett-Packard Journal 25

Presilicon
Functional
Verification

= Verification Resource

= Verification Activity
Proprietary
Simulator

Verification

via
Verilog / Emulation
Emulation
System

Bng\fg Gate-Level Emulation
) Behavior
RV Control Circuit Emulation Tools Model

Model

Model Design Manual Fixes

Switch-

Postsilicon
Functional
Verification

Postsilicon
Electrical
Verification

System Verification
Turn-on via
Emulation

Emulation
System

Revised
Models

Next-Pass
Silicon

First-Pass
Silicon

Level

Model Fabrication

of Artwork

Fabrication
of Artwork

Schematic and/or Artwork Extraction

Time
e

Fig. 2. Overview of the functional verification process.

would use to verify the chip. As shown in Fig. 2, our verifi-
cation methodology included several distinct forms of veri-
fication, some of which occur before silicon is manufac-
tured (presilicon verification) and some of which occur
after first silicon appears (postsilicon verification).

Presilicon verification activities included:

Creating software behavioral models through which we
could verify the correctness of either the entire design or
portions of it

Creating switch-level models of the implementation to
ensure that the implementation matched the design
Writing test cases that provided thorough functional
coverage for each of these models

Using in-circuit emulation to increase vector throughput and
to provide an orthogonal check of the chip’s correctness.

Postsilicon verification activities included:

Augmenting functional coverage by running hand-generated
test cases, randomized test cases, and application software
Testing actual silicon against its electrical specification using
a rigorous electrical testing procedure.

We designed each portion of our verification methodology to *®

ensure that we could meet our schedule and quality goals.
The following sections describe in more detail the types of
verification we used.

A New Strategy

At the time work was starting on the development of the PA
7100LC chip, HP was moving toward a new product devel-
opment philosophy, which had as its basis the fact that HP
could no longer afford to do everything for itself. The time
had come to specialize in core competencies and look to
outside vendors to cover the needs common in the industry.
Unless HP provided a clear competitive advantage over in-
dustry-standard tools and methods, design teams were en-
couraged to adopt these standards, paying others to develop
and maintain leading-edge tools and processes.

26 April 1995 Hewlett-Packard Journal

During the PA 7100LC investigation phase, engineers investi-
gated industry-standard tools in the areas of behavioral simu-
lation, static timing analysis, fault grading, timing verification,
switch-level simulation, and other areas of chip verification.
The first and foremost goal of these investigations was to
determine which tools provided the fastest and most effi-
cient contribution toward design and verification, ultimately
leading to earlier products. The following section will pro-
vide an analysis of our behavioral simulator selection, which
is just one example of the many tool decisions we made for
the PA 7100LC.

Behavioral Simulation. Before the PA 7100LC development
effort, we had been using a proprietary simulator which was
written and maintained by an internal tools group. With the
standardization of simulation languages in the industry, we
questioned the value of high internal development and
maintenance costs for this tool. We investigated the language
and simulator options available in the industry and eventu-
ally reached a final list of choices:

* The proprietary HP solution

Verilog
VHDL (IEEE standard 1076).

Other HP design labs, responsible for graphics and IC hard-
ware design, had migrated to Verilog from the HP simulator
and had found significant improvementsn simulation
throughput on their ASIC designs. The throughput disadvan-
tage of the HP simulator was somewhat balanced by the fact
that it carried no licensing fees, was fully robust, and had
been proven capable of simulating a large, custom IC design
such as a CPU.

Verilog had become a de facto standard in the U.S. for high-
level and gate-level simulation in 1992 and had been used
extensively in HP’s graphics hardware and IC design labs.
Their experience indicated that Verilog was very robust and
that it allowed personalized extensions through linking with
C code. The IC design lab demonstrated simulation speeds

[Hewlett-Packard Company 1995

with Verilog that were about seven times faster than the in-
ternal HP simulator. Since Verilog was becoming more com-
mon within HP, it would ease our task of sharing and com-
bining simulation models with design partners. For example,
the floating-point circuits that we would be leveraging from
the PA 7100 for the PA 7100LC were modeled in Verilog. The
graphics chip and the LASI chip used in the Model 712
workstation were being developed using Verilog, and many
of the commercial ICs used in the system had Verilog models
available for system simulation. By choosing Verilog, we
would create a homogeneous environment. We also felt that
Verilog’s C-like syntax would allow engineers to learn the
language quickly. Finally, the Verilog language would pro-
vide a bridge to other useful industry-standard tools for static
timing, fault grading, and synthesis.

At the time we were investigating simulators we found only
one supplier who could provide a mature Verilog simulator
in our required time frame. This particular simulator had
some disadvantages compared to our internal simulator,
which included higher main memory requirements and the
need to recompile the simulation model at each invocation
of the simulator. For large models, this compile phase could
last a full minute. The internal simulator, by contrast, com-
piled the model once into an executable program which
contained the simulation engine, and incurred no run-time
startup penalty. Also, because Verilog was licensed we
would have to purchase sufficient licenses to cover our sim-
ulation needs, which would present a large initial expense.

A third major simulation language we investigated was VHDL
(IEEE Standard 1076). While Verilog was becoming a de facto
standard in the United States, VHDL was sweeping Europe.
VHDL shared many advantages and disadvantages with
Verilog. Simulation models of commercial system chips were
often available in both languages. VHDL provided hooks to
support industry-standard tools for timing, fault grading, syn-
thesis, and hardware acceleration. VHDL was also licensed
and would be expensive. The primary differentiator between
VHDL and Verilog was in ease of use and ease of learning.
Other HP design labs indicated that VHDL was more difficult
to learn and use than Verilog. Also, there was no local ex-
pertise in VHDL, while proficiency in Verilog had been
growing, and significant inroads had already been made at
integrating Verilog into the remainder of our tool set.

With this information in mind, the PA 7100LC technical team
decided to use Verilog as the modeling language for the PA
7100LC processor. The compelling motivations for this
choice were:

The demonstrated success of other HP labs in using the Ver-
ilog simulator in ASIC designs

The availability of local expertise and support for the
simulator and modeling language

The ability to standardize on a single simulator and model-
ing language for the development of all custom VLSI used in
the HP 9000 Model 712

The ability to interface easily to other industry-standard
tools.

[J Hewlett-Packard Company 1995

Given this decision, we joined an effort with other design
labs to enhance the Verilog simulator to include an improved
user interface and more tool interfaces to be used through-
out our verification effort.

Turn-on Process. We migrated to the Verilog modeling lan-
guage and simulator in two steps. First, we validated that
Verilog could simulate an existing PA-RISC design of compa-
rable complexity to the PA 7100LC by converting the PA
7100 simulation model (from which the PA 7100LC design is
leveraged) into Verilog. Second, we used the knowledge that
we gained during this conversion process to complete the
development of the PA 7100LC.

Converting the PA 7100 simulation model into Verilog was a
good decision for several reasons. We wanted to start with a
known functional model from which we could leverage. We
also needed to confirm that Verilog was robust and accurate
enough to model a design as large and complex as a CPU.
The PA 7100 offered a hierarchical, semicustom design
model that consisted of high-level behavioral blocks (e.g.,
the translation lookaside buffer) and FET descriptions (e.g.,
in custom leaf cells). This varied design would provide a
good test of the simulator’s ability and would help us to
learn about Verilog’s unique requirements.

To aid the conversion process, we created a tool that con-
verted the HP proprietary modeling language to Verilog syn-
tax. We fixed code by hand wherever the two languages did
not have similar constructs or where they evaluated similar
constructs differently. The converted model passed its first
test case within two months.

Once the PA 7100 model was up and running in Verilog, we
measured its simulation throughput. Instead of the expected
7% speedup, we discovered a full 4x slowdown compared to
the HP simulator. We also found that the model consumed
more memory than we had anticipated. Through careful
analysis and support from our supplier, we learned that
much of our model syntax was very inefficient. In addition
to inefficiencies created by the translation tools, many syntax
structures that were optimum in HP’s simulator were nonop-
timal in Verilog. Profiling and correcting these inefficiencies
greatly improved performance and resource requirements.

Results. The result of the decision to use Verilog to model
the PA7100LC was positive, with a few disappointments. The
main disappointment was that the Verilog model of the PA
7100LC achieved only parity in throughput and required five
times more memory than the HP simulator.

However, Verilog brought strengths in other areas. Verilog
allowed us to make incremental changes to the model
quickly and easily. Verilog enabled us to capitalize on indus-
try-standard tools in the areas of synthesis, timing, fault grad-
ing, and in-circuit emulation. We were able to use a single
modeling language across all of the custom components in
the HP 9000 Model 712 workstation and to obtain compat-
ible models for many of the external components.

April 1995 Hewlett-Packard Journal 27

We soon learned to use the new strengths provided by Veri-
log and became efficient in using the language and the new
simulator. Verilog successfully modeled all constructs re-
quired in the PA 7100LC design, and a high level of quality
was the end result of using this tool.

Presilicon Functional Verification

Because the cost and lead time of manufacturing CPU die are
so great and because our system partners depend on fully
functional first silicon to meet their schedule goals, it is im-
portant that our presilicon verification methodology give us
high confidence in the functional quality of the first silicon.
This task proved to be a challenge for the PA 7100LC chip
because it was designed by many engineers, and its feature
set is extensive and complex. These factors introduced the
opportunity for design and implementation bugs.

The PA 7100LC is the first HP processor chip to integrate the
memory and I/O controller on the same die as the CPU. In
the past, these designs lived on separate die and were owned
by separate project teams. The verification efforts for the two
designs were mostly independent. A careful specification of
the interface between the two designs allowed this approach
to succeed.

We realized that even though the PA 7100LC would integrate
the memory and I/O controller onto the CPU die, it would
be more effective to verify the memory and I/O controller
separately from the CPU core for the majority of the tests.
This would allow test cases for both the CPU and the mem-
ory and I/O controller to be more focused, smaller, and
faster to simulate than they would be in a combined model.
We created a well-defined interface between the CPU and
memory and I/O controller to enable this approach.

Each of these presilicon verification efforts was structured as
shown in Fig. 2. First we created a behavioral model for the
portion of the design whose function was to be verified. A
behavioral model represents the design at some level of ab-
straction, and typically moves from very high-level to much
more specific as the project progresses. As mentioned above,
we chose Verilog as the modeling language for our design.

The behavioral model was the heart of the simulation envi-
ronment that would enable us to verify the CPU and the
memory and I/O controller. Our job was to find deficiencies
in this model. However, to do this we needed a way to stim-
ulate the model, observe its results, and ensure that its be-
havior was correct. To meet these needs, we created addi-
tional software objects to complete the simulation
environment.

At each of the external interfaces of the behavioral model,
we created custom code that was capable of modeling the
behavior of the device on the other side of the interface and
of stimulating and responding to the interface as appropriate
for that device. For example, these stimulus-generating soft-
ware objects were used in our simulation environment in the
same way that dynamic RAM, external cache, and I/O devices
are used in a physical system. We authored the code that
models these objects in a high-level language (typically C).

28 April 1995 Hewlett-Packard Journal

Another type of custom software that augments the simula-
tion environment consists of checkers. A checker monitors
the behavioral model and checks aspects of model behavior
for correctness. We used a number of different checkers dur-
ing the PA 7100LC verification effort. Some checkers were
very focused (e.g., a protocol checker on the I/O bus), and
others were more global (e.g., the PA-RISC architectural simu-
lator).

Creating “watchdog” pieces of code to detect and signal er-
rors automatically in the simulation environment helped us
to maintain our schedule. Previous CPUs had an indepen-
dent model of the design that matched the behavioral model
state-by-state for all external pads and architected internal
state.* Creating the independent model was time-consuming
and not easily broken into small pieces that could be
worked on in parallel. We couldn’t run test cases on the be-
havioral model without a fully functional independent
model. Replacing this independent model with a collection
of checkers allowed us to create multiple checkers at the
same time. We were able to turn on the checkers indepen-
dently as the functionality that they checked became avail-
able in the behavioral model. Also, the checkers didn’t need
to be fully functional for us to run useful test cases.

The final aspect of the simulation environment is the test
case. A test case provides initialization to the model and the
stimulus generating software objects and then orchestrates
the stimulus generators to provide external stimulus while
the model is simulating. The checkers constantly watch
model behavior and identify rules that the model violates. The
test cases are not self-checking. They simply stimulate the
model and rely on the checkers to ensure that the model
responds correctly.

We wanted the test cases to create the complex interactions
in the CPU core and in the memory and I/O controller that
are necessary to find subtle bugs. The model, stimulus gen-
erators, and checkers provide an environment that makes it
easy to generate short, powerful test cases. To improve test
case coverage, we gave the responsibility for test case cre-
ation to both the CPU and the memory and I/O controller
designers, who had a detailed knowledge of the internal
operation of the chip, as well as to independent verification
engineers, who knew only the external functional specifica-
tion of the chip. We used design reviews to ensure that our
suite of test cases adequately covered all functionality pres-
ent in the design.

Testing on the behavioral model is the first line of defense
against flaws in a design. To ensure that our implementation
matched the design, we ran our full suite of test cases on a
gate-level behavioral model. We created this model from the
complete chip schematics. We also tested a switch-level
model that we created by extracting the FET netlist from the
completed chip artwork. Since this was the same artwork
that manufacturing would use to fabricate the chip, this re-
gression served as a final test of the functional correctness of
both design and implementation.

*In this usage architected state refers to a particular pattern of ones and zeros on internal chip
nodes.

[Hewlett-Packard Company 1995

To ensure that there were no coverage holes in the interface
between the CPU and the memory and I/O controller, we

created a model that merged these two designs into a single
behavioral model of the entire chip. We tested this model to
gain certainty that both parts would work properly together.

Finally, we combined behavioral models of the PA 7100LC
with behavioral models of other chips in the system and
performed system-level verification to ensure that each of
the chips interpreted the interchip interfaces consistently and
to ensure that all the chips in the system functioned as ex-
pected.

Using this extensive verification methodology, the first silicon
we delivered allowed us to boot the HP-UX* operating system
and enabled our system partners to progress towards meeting
their system schedules.

Postsilicon Functional Verification

Presilicon verification, while providing an excellent first pass
at ferreting out design or implementation flaws, is not capa-
ble of identifying all bugs in a complex custom CPU such as
the PA 7100LC. Two factors make this true. First, the simula-
tion speeds of even high-level behavioral models (typically
less than 10 Hz) are not sufficient to exercise all the interest-
ing state transitions within the CPU in the time available.
Second, experience has shown that in a chip of this type
there are sometimes subtle differences between the presili-
con model and actual chip behavior.

To ensure a quality CPU design, we performed extensive
postsilicon testing on the PA 7100LC in systems running at
actual processor speeds (50 to 100 MHz). The difference of
about seven orders of magnitude in vector throughput be-
tween running test cases on presilicon models and code
running on actual silicon underscores the potential for thor-
ough testing offered by postsilicon verification.

One of the goals of presilicon testing is to ensure that the
simulation model matches the behavior specified by the de-
sign. We carried this goal into postsilicon testing and ran a
suite of tests on actual chips in a computer system. The tests
behaved the same when they were run in the computer sys-
tem as they did on the PA 7100LC presilicon models.

We knew that postsilicon testing would be the last opportu-
nity to find functional problems with our processor before
we shipped systems to customers. Since the cost of finding a
serious functional problem once systems are shipped is ex-
tremely high, we wanted to exercise the processor
thoroughly with as many different tests as possible. The vari-
ety of features that we had added to the PA 7100LC made
this process more difficult. Each of these features had to be
tested, usually in combination with other features.

The tests that we used during the PA 7100LC postsilicon
verification effort included:

A collection of handwritten tests, run in an environment that
made them more stressful for the processor

Random code generators that produced software that
deliberately stressed complex areas of the processor

A collection of application software including operating sys-
tems, benchmarks, and other applications.

[J Hewlett-Packard Company 1995

Handwritten Tests. Hewlett-Packard has created a library of
programs whose purpose is to ensure that a processor con-
forms to the PA-RISC architecture. In addition to this library,
we created other programs to test specific processor fea-
tures. We also created a small operating system that allowed
many of these programs to run simultaneously and repeti-
tively in a manner that was stressful to the processor. This
operating system would interrupt the programs at different
intervals and also change portions of the processor state
(e.g., cache and TLB) before restarting a program. Finally, the
operating system kept an extensive log of program activity
to help us track down bugs that it found.

In addition to the programs that we ran under the special
operating conditions, we created another set of handwritten
tests specifically to test the memory and I/O controller por-
tion of the processor. These tests used an I/O exerciser card
to ensure that the memory and I/O controller would behave
properly in the presence of any conceivable I/O transaction.
We also used these tests to exercise the DRAM interface of
the memory and I/O controller.

Focused Random Testing. To supplement the handwritten tests
we developed two random code generators. Experience
gained during past processor designs had taught us that a
certain class of bugs appear only when a number of com-
plex interactions occur within the CPU. It wasn't feasible to
create handwritten tests to cover all of these interactions
because the time requirements to do so would be prohibi-
tive. Additionally some of the tests would need to cross so
many interactions that it would be difficult to guarantee ade-
quate coverage with handwritten cases. Using a random
code approach, we used code generators to create the test
cases that found bugs in this class.

Another strength of the random code approach was that we
were able to take full advantage of the speed of postsilicon
testing. We could run all handwritten tests in a short time on
an actual processor. Random code generators made it pos-
sible to generate millions of different tests to keep the pro-
cessor fully exercised, at speed, for long periods of time.

One could create many conceivable random code genera-
tors, which could differ in many ways including the type of
code produced, fault latency, ease of debugging, repeatabil-
ity, and initialization. Design differences in random code
generators cause coverage differences (one generator may
be able to find a bug that another missed). Random code
generators mainly differ in the sequence of instructions and
in what constitutes initial and final processor state. In gen-
eral it is best to run code from as many different sources as
possible to ensure the best coverage.

Of the two random code generators that we developed, one
stressed the floating-point unit and another stressed the inte-
ger unit. Each of these generators produced tests
consisting of:

An initial processor state

A sequence of PA-RISC instructions

An expected final processor state.

The focused random approach worked extremely well during
the PA 7100LC verification effort. Using it, we were able to

April 1995 Hewlett-Packard Journal 29

complete thousands of machine-hours of testing and identify
a majority of postsilicon bugs.

Our decision to emphasize random code testing paid off. Be-
cause of the proven effectiveness of the random approach,

we will probably continue in this direction and make evolu-
tionary changes to make the approach even more effective.

Application Software. In addition to handwritten and random
tests, we ran a variety of “real-world” software applications
to further ensure that we had found and fixed all bugs.
These applications were intended to help diagnose failures
suspected to be caused by the hardware. We booted operat-
ing systems (like HP-UX) shortly after chips were available.
We also conducted long-term operating system reliability
tests when more stable hardware and software became avail-
able. We filled out our array of application software tests
with benchmark suites and other applications.

Acceptance Criteria. A challenging question that engineers and
managers face during any postsilicon verification effort is
“When are we done?” Having clear criteria for the quality
required to ship the chip to customers is paramount. For the
PA 7100LC, we used the following acceptance criteria:

All failures are diagnosed to root cause.

No chip failures exist.

All handwritten code works.

Random code generators have run for a long time without
finding any failures.

Application software has run without any indication of hard-
ware bugs.

In-Circuit Emulation

In addition to constantly tuning existing design and verifica-
tion methodologies in areas where high-impact productivity
gains are essential to stay on the leading edge of the industry,
we also look for new breakthrough technologies and areas
for paradigm shifts. We considered in-circuit emulation as
such an area for the PA 7100LC.

In-circuit emulation means that a chip is modeled at the gate
level in field programmable gate arrays (FPGAs) and con-
nected directly to a chip socket in a real system running at a
reduced frequency. This allows the modeled chip to run real
system-level software.

Continual increases in chip complexity must be countered
with more effective verification to ensure high-quality first-
silicon chips. The goal is to have a perfect chip, but the re-
quirement is to prevent masking bugs. A masking bug is a
serious bug that causes a class of chip functionality to fail.
The verification team is unable to “see behind” the bug to
test for other failures in that area of functionality. The chip
must be redesigned to fix the masking bug and must pass
through fabrication before this functionality can be tested.
Emulation was viewed as a way to prevent these serious
masking bugs.

Besides ensuring high-quality first silicon, it is also desirable
to have enough presilicon simulation throughput to verify
any proposed postsilicon bug fix. Since turning a chip is
costly and time-consuming, incorrect bug fixes that cause
additional bugs must be eliminated.

30 April 1995 Hewlett-Packard Journal

During the early phases of the PA 7100LC chip design effort,
in-circuit emulation technology came of age and was avail-
able through external vendors. We investigated this new
technology in depth. For us, in-circuit emulation was viewed
as a paradigm shift in verification and very attractive because
it would:

Provide near “real hardware” throughput with a presilicon
model

Allow thorough regression of any mask or full chip turns
necessitated by bugs or timing paths found during postsilicon
verification

Allow the firmware and software teams to test their code
before real hardware was available

Add another important debugging capability to our suite of
debug tools that allow us to isolate postsilicon bugs

Allow us to recreate real hardware failures on a presilicon
model and allow visibility to all internal nodes of the chip.

We also saw some areas of concern in pursuing in-circuit
emulation. We perceived in-circuit emulation as challenging
and risky because it was a new technology within a very
young industry. We lacked expertise in using emulation
tools, and it would be expensive to gain the necessary ex-
pertise to make in-circuit emulation part of our chip design
methodology. In addition to this, the emulation tools and
hardware were very expensive.

Our concern with technology risk was eased by several fac-
tors. We were promised very strong (on-site) support from
the emulation company that we chose. They assured us that
tools capable of handling large designs would be available
early in our design cycle. We had independent corroboration
from other HP entities, who had seen great success with
emulation in ASIC design efforts.

After weighing the potential advantages, risks, and our long-
term needs we determined to pursue in-circuit emulation.
We didn’t believe that emulation was absolutely critical to
our success on the PA 7100LC, but we felt that dramatic im-
provement in simulation throughput would be required to
verify the increasing complexity of our next-generation pro-
cessor design. This effort was simply the first step in a long-
term strategic direction.

Emulation Methodology

The real goal of our emulation effort was to plug the emula-
tion model into the physical system and run at frequencies
near 1 MHz. The team modified an HP 9000 Series 700
workstation to provide the required boot ROM, disk, and
I/O subsystem. A special processor board was designed that
allowed the emulation system to plug into the CPU socket.
This board also provided external cache (SRAM) and main
memory (DRAM). One challenge was to keep the DRAM
refreshed since the processor wasn’t running fast enough to
keep memory refreshed and make forward progress on the
code stream at the same time. We implemented a solution
that coalesced the processor memory transactions between
refresh cycles provided at a constant frequency by a module
external to the CPU. This made refresh transparent to the PA
7100LC emulation model. Fig. 3 shows our emulation setup.

[Hewlett-Packard Company 1995

TTL Implementation Register

and Memory Arrays
Ribbon
Cables

Ribbon Processor Board

Cables @
Memory
SIMMs

Emulation
System

(FPGAS) HP 9000
System Clock Cache Series 700
Workstation Box Power
Supply
I/0 Converter
HP 9000
Series 700
Workstation
Controller — Disk

Pulse
Generator

Along with these physical challenges, we also addressed
modeling issues. The emulation company provided an on-
site, experienced engineer to join our emulation team. The
preliminary goal was to take a substantial top-level block
netlist and prove that our style of custom design would emu-
late successfully. We chose a block that contained many
unique and difficult-to-model elements. It contained custom
data path blocks and some control blocks, and included
some large regular arrays such as register stacks, TLB, and
internal cache. Because of their size and regular structure,
we chose to model the cache, register stacks, and TLB on
external component boards using TTL parts and PALs. We
turned to industry tools to translate our library of custom
cells into emulation gates, but quickly found that the tools
were incapable of generating accurate gate-level models. We
were forced to create handwritten translations for the entire
library to make progress.

Once we had completed this initial block, we ran the model
in cosimulation mode with a Verilog simulator. The emula-
tion hardware modeled our target block, while the Verilog
simulator modeled the rest of the PA 7100LC. The models
exchanged stable input and output values after every CPU
clock transition. This approach allowed turn-on and testing
of the external component boards as well as flushing out of
modeling issues.

Next, we attacked the full chip. Our emulation team created
a full chip model, which was partitioned and programmed
into the FPGAs in the emulation boxes. This became a pain-
ful process as we learned that the hardware and software
had never been used on a design of this size, and fatal tool
failures stopped progress many times.

We achieved our first working model that ran through all the
firmware code shortly after the PA 7100LC chip achieved tape
release. We debugged all firmware code before first silicon
arrived from fabrication. This made silicon turn-on much
faster than would have been possible otherwise. We resolved
some nagging emulation failure modes in the difficult-to-
model floating-point circuits within one month of receiving

[J Hewlett-Packard Company 1995

I/0 Backplane

RS-232

Fig. 3. Emulation setup for the
PA 7100LC.

the first silicon chips. This emulation model allowed exten-
sive testing on the final chip specification before the masks
were released to fabrication. Only one hardware bug was
found using emulation.

From our emulation efforts we learned the following:

* Our method of custom VLSI design was difficult to model in

emulation gates. Many unanticipated race conditions were
found which had to be resolved. For example, we allow
races (e.g., between a latch’s data signal and its enable sig-
nal) that we can guarantee will be won on the chip. How-
ever, with uncertain delays on these signals within the
FPGAs, these races are easily lost. We also found that
wire-OR logic is very difficult to model.

* We found that electrical characterization was the limiting

issue for shipping products in volume. Emulation does not
help this problem directly. Although it does help to prevent
masking bugs, it may not actually shorten the ship-release
date.

Even though custom VLSI chips are much more difficult to
emulate than ASICs, in-circuit emulation is a viable technol-
ogy. As emulation technology matures, the effort required to
model complex CPUs will become more reasonable. Because
of the immaturity of in-circuit emulation technology at the
time we were using it, we were only able to make a minor
contribution to the development of the PA 7100LC with this
technology.

The learning curve for emulation technology was steep, but
this effort can be seen as successful when used as a stepping
stone to a new technology paradigm. We identified many
issues and shortcomings with using current emulation tech-
nologies to accelerate vector throughput. We can now con-
tinue to move towards either applying more mature emula-
tion technology or developing new approaches that better
address the issues that we identified.

Postsilicon Electrical Verification

The goal of postsilicon functional verification is to identify
failures caused by inappropriate logic within the chip. These

April 1995 Hewlett-Packard Journal 31

functional failures generally manifest themselves on every
chip that we manufacture and will be unrelated to the oper-
ating point (e.g., temperature, voltage,or frequency) of the
CPU.

Electrical failures are another class of failures that we sought
out during the postsilicon verification effort for the PA
7100LC. Electrical failures cause the chip to malfunction and
typically have a root cause in some electrical phenomenon
such as:

Ground or power supply noise on the board or chip
Coupling between signals

Charge sharing

Variation in FET speed or drive capability caused by
variation in the manufacturing process

Leakage related phenomena

Race conditions

Unforeseen interchip circuit interactions.

Because the integrated circuit manufacturing process varies
slightly with time, electrical failures may or may not be pres-
ent on all chips that are produced. Further, certain operating
conditions will typically exacerbate the failure. Sometimes a
failure will occur at any operating point and can be difficult
to distinguish from a functional failure. However, most will
be dependent upon some parameter of the chip’s operating
point.

To deal appropriately with failures of this class, we staffed
an electrical verification effort for the PA 7100LC that was
mostly independent from its functional verification
(described earlier). The goals of this effort were to:

Identify, isolate to root cause, and repair all failures within
the operating range possible in customer systems

Identify and isolate to root cause any failures within a signif-
icant, well-defined region of margin outside of this operating
range.

The first goal is clearly necessary to provide quality systems
to customers. We created the second goal with the knowl-
edge that in some cases, understanding the root cause for
failures outside of our expected operating range would be
beneficial. Sometimes this knowledge would enable us to
make proactive design changes which would increase chip
yields, resulting in lower chip and system costs. Such knowl-
edge is also useful when moving the chip into a higher-fre-
quency range or a new process technology.

To meet these goals, we instrumented several systems so
that we could independently control each of the CPU supply
voltages and the operating frequency of the system. We inter-
faced each set of controlling instruments to a host computer
which could systematically vary the operating point parame-
ters, direct the system under test to run a variety of possible
tests, and observe and log the results of those tests. We
placed each system under test in an environmental chamber
that was capable of varying the temperature from -40°C to
100°C. In each system under test, we also varied system pa-
rameters such as memory loading and I/O bus loading.

In the presence of an electrical failure and the appropriate
operating conditions, certain code streams will not evaluate
as expected. To ease the task of isolating electrical failures,
we created test code specifically for electrical verification
that stressed the various interfaces and functional units of

32 April 1995 Hewlett-Packard Journal

the chip in turn. Each segment of this test code would indi-
cate its progress as it ran. This allowed us to isolate a failure
quickly to a particular, very short segment of the test code.

In addition to this electrical verification code, we leveraged
the random code generators used by the functional verifica-
tion team, and ran the code sequences that they produced at
the corners of the PA 7100LC’s operating region.

Using this data generating and collection system, we were
able to create graphs that indicated passing and failing code
sequences as a function of voltage, frequency, temperature,
system conditions, and IC process. By inspecting the operat-
ing point dependencies (or lack of dependencies) of a fail-
ing code stream, we could gain insight into the root cause
for a failure. To confirm our root cause analyses and poten-
tial fixes, we created new handwritten test codes, altered
existing silicon using focused-ion-beam milling, and per-
formed electron beam probing of chips in systems.

The PA 7100LC’s postsilicon electrical verification effort en-
sured that the chip would perform well in a wide range of
electrical environments. It identified easily repaired yield
limiters that allowed us to maximize yield and minimize the
cost of the CPU. Each of these successes allowed our system
partners and customers to be more successful in meeting
their goals.

Debug and Test

Since the PA 7100LC processor was designed to be the core
component of a low-cost workstation line, the factory cost
goals and expected volumes clearly indicated that careful
attention to ease of test and manufacturability was necessary.
The following test features were defined based upon design
and manufacturing needs:

Parallel test vector capability in excess of 100 MHz

IEEE Standard 1149.1-compatible boundary scan interface
On-chip clock gating circuitry

Retention of internal state when the chip clocks are halted
Internal scan with single and double clock step capability
Fully static operation to support off-chip Ipp¢ testing
Signature analysis capability for testing the on-chip
instruction buffer

At-speed capture of internal states by scan registers.

To meet manufacturing cost goals, the PA 7100LC had
aggressive quality and test time goals compared with our
previous processor designs. Both of these items significantly
affect final chip cost. A test methodology was developed
early in the design phase to facilitate the achievement of
these goals. The methodology encompassed chip test and
characterization needs and manufacturing test needs.

Testing is accomplished through a mixture of parallel and
scan methods using an HP 82000 semiconductor test system.
The majority of testing is done with at-speed parallel pin
tests. Tests written in PA-RISC assembly code cover logical
functionality and speed paths and are converted through a
simulation extraction process into tester vectors. Scan-based
block tests are used for circuits such as standard-cell control
blocks and the on-chip instruction buffer which are inher-
ently difficult to test fully using parallel pin tests. Ippg mea-
surements are also performed after some parallel tests

[Hewlett-Packard Company 1995

Holder
Circuitry

Hold Up

Hold Down

VoL

Input Receiver

Boundary
Scan Drive g::f,%l:t
Tristate
Enable }
. Pull Up I
Drive Clock - Pad
i Pull Down
Pad Data - DI ;

4

A I
Boundary
Scan Data

Boundary

Large

Scan + Scan Out b
Circuitry

FETs

Voo

Small
Holder
FETs

Fig. 4. Simplified diagram of a PA 7100LC I/O driver. Static current can flow from Vpp to ground in the inverters if the pad is not driven
to Vpp or ground. For example, if the pad driver drives a one, the pad would be driven to 3.3V (Vpy), which would cause static current to
flow, invalidating the Ippg test. For Ippg measurements, the pad is driven to 0V (ground) through the boundary scan circuitry and pad

driver.

to provide additional defect coverage. The parallel test se-
quence is 600,000 states long, and 42 Mbits of scan vectors
are used during scan testing.

To meet our test quality and cost goals, we implemented
two new chip-test techniques that had not been used on
previous PA-RISC implementations: Ippg testing and sample-
on-the-fly testing.

Ippg Implementation

Ippg testing is a test methodology in which the presence of
defects is detected by measuring dc current when the chip is
halted. Nondefective full CMOS gates draw static current
made up of leakage currents that are in the nA range. How-
ever, defective gates can draw currents many orders of mag-
nitude higher. If a current measurement is made on the
power supply during a static state, a good chip will draw
very little current and a defective chip will draw much more.
Ippg has high observability and detects many different types
of defects. It was decided early in the design of the CPU that
Ippg test capability would be a desirable test feature. Ippg
test capability was also desirable because it substantially
reduces static power consumption.

Design Rules. To support Ippg testing, most of the circuits
leveraged from past PA-RISC implementations that drew dc
current were eliminated. For each case in which using a cir-
cuit that drew static current was the only reasonable design
solution, the circuitry was redesigned to be disabled with a
test signal during Ippg measurements. Most blocks contain-
ing pseudo-NMOS circuitry were redesigned using static
CMOS circuitry. Dynamic circuits were modified to eliminate
static current and to retain state while the chip is halted. No
FET gate is allowed to be in a situation where it could float
if the clocks are halted because this could possibly cause the
FET to turn on. Internal pullups on input pins are disabled
during Ippg measurements, including the IEEE 1149.1 test
pins. No drive fights are allowed in a static state. All nodes
make a full transition to a supply rail, which is accomplished

[J Hewlett-Packard Company 1995

through the use of restorative static feedback when full
CMOS transfer gates are not used in latches and multiplex-
ers. Any bus that could be completely tristated in any state
uses a bus holder circuit to maintain proper levels.

Special Considerations. The floating-point ALU, which was
leveraged from the PA 7100 processor, drew static current
and redesigning it was not feasible given our schedule con-
straints. However, it is possible to eliminate the static current
during Ippg measurements if the ALU is not evaluating dur-
ing the measurement. Since Ippg testing was not going to be
used to test the ALU, this was acceptable. Ippg testing dur-
ing parallel vectors is still possible, but if a floating-point
operation occurs that uses the ALU, the ALU loses its internal
state if Ippg test mode is enabled during the test.

Another area of consideration for Ippg involved the 1/0 bit
slices. The CPU uses two power supplies, Vpp and Vpy,
which are nominally at 5V and 3.3V respectively. Vpp sup-
plies all of the internal chip logic, while Vpy, is the supply
for the output driver pullup FETs. The input receivers on the
CPU normally draw static current when an output driver is
on that drives to Vpr. In addition, a circuit to hold the cur-
rent value on the pad can draw static current if the pad is
not driven to Vpp or ground. Therefore, when Ippg mea-
surements are taken, the output drivers are driven to ground
through the use of the boundary scan circuitry to eliminate
static current flow in the receiver and pad holder circuits
(see Fig. 4). The parallel tester drives input-only pins to Vpp
or ground as appropriate, including the IEEE 1149.1 interface
pins. The analog inputs of the clock buffers are also driven
to appropriate values to prevent static current.

These rules were easy to adhere to and followed our ratio-
nale to increase test capability with little design impact. Ippg
compliance was verified by running functional simulation
cases through an HP proprietory FET-level switch simulator
which also has the ability to check for static current

April 1995 Hewlett-Packard Journal 33

HP 82000 Test Fixture

Test Fixture Vpp Ring

Bypass
Capacitors

Bypass
Capacitors

Microamps Several Amps

HP 82000 Test System

Parametric Measurement

Device Power Supply
(Supplies High Dynamic
Current)

Unit (Supplies and Measures
Low Static Current)

® = Relay Controlled by Tester

Fig. 5. Ippo measurement setup.

violations. Because of careful attention to the design guide-
lines, only six Ippg violations were discovered when the
simulations were run, all of which were easily resolved.

Ippg Measurement

Ippo measurements are taken using a parametric measure-
ment unit on the HP 82000 tester (see Fig. 5). When a mea-
surement is to be taken, a vector sequence is run to place
the device under test (DUT) into a static state. After the dy-
namic current transients have settled, the measurement unit
is connected to the chip power plane with a relay, and the
regular Vpp supply is then switched out with relays. The
parametric measurement unit then supplies and measures
the current flowing into the DUT. The power plane for the
DUT is separated from the test fixture power plane by relays
connected between the chip and the test fixture. Bypass
capacitors to control supply noise are placed on Vpp on the
power supply side of the relays. This is important because
leakage currents in large electrolytic capacitors can be tens
of microamps, which would compromise the accuracy of the
measurement.

Typical measurements are in the range of 1 pA. The Ippg
current is dominated by reverse bias leakage current and
subthreshold leakage. Measurements are taken during wafer
and package test, and four measurements are made. Four
parallel vectors are used, which initialize the registers, cache,
TLB, and other state logic to zeros or ones and two patterns
of alternating ones and zeros (to check for bridging faults).
This provides a great deal of defect coverage while incurring
minimal test overhead.

34 April 1995 Hewlett-Packard Journal

Ippq testing was very effective at catching defects on the PA
7100LC. Results indicate that 50% of scan test failures and
70% of parallel failures are caught by Ippq testing. In addi-
tion, other types of defects are caught that might not be
caught by conventional voltage-level testing, like gate oxide
shorts and some types of bridging faults. These can lead to
reliability problems over the life of the product, so it is im-
portant to catch them at the chip test stage.

We plan to do more directed Ipp testing on future chips,
using scan testing and parallel testing to set up and measure
current for specific chip states indicated by automatic test
generation tools. This should improve the level of coverage
we get for Ippg tests. However, one problem that may occur
is that off-FET leakage will increase in the effort to improve
FET performance in future IC processes. This has a direct
effect on the ability of Ippg techniques to resolve low cur-
rent defects. Additional techniques like power supply parti-
tioning may be necessary to make Ippg usable with more
advanced IC processes.

Sample-on-the-Fly Testing

An interesting new feature that is implemented on the CPU
enables scan registers to capture the internal state of the
chip while the chip is operating at speed in a normal system.
We refer to this capability as sample-on-the-fly testing. The
sample is nondestructive, and the data can be accessed
while the chip continues to execute code by scanning the
results out using the on-chip IEEE 1149.1-compatible test
access port (TAP). This feature was very useful for debugging
and characterizing system-level performance because it is
essentially a logic analyzer built directly into the chip which
allows access to over 4000 internal state values. Samples can
be taken with any IEEE 1149.1-compatible test controller and
appropriate software.

Internal Sampling. The internal sampling capability allows a
sample to occur when the architected PA-RISC interval timer
reaches a count that matches a preset value in a register and
the TAP circuitry is in a specific state. In the PA 7100LC the
interval timer on the chip is a 32-bit register that increments
by one for every clock cycle that occurs on the chip. An
additional 32-bit register provides a value to compare with
the value in the interval timer register. This value can be set
by doing a PA-RISC mtctl (move to control register)T instruc-
tion. When the interval timer value matches the value set by
the mtctl instruction, a comparator circuit generates a signal
which is normally sent to the control logic to cause an inter-
val timer interrupt to occur. This signal is also sent to the
TAP in this implementation. If the current TAP instruction is
ISAMPLE, the state of the chip is sampled into each scan reg-
ister on the following chip state by allowing each scan regis-
ter to update during the phase when the functional latch is
not being updated. An indication that a sample has occurred
is sent from one of the test pins when the sample is taken.
The pin can be monitored by an external IEEE 1149.1-com-
patible controller system to determine when data can be
shifted out of the chip. The shifting of the sampled data
does not corrupt the state of the internal logic.

t This instruction moves data to a control register. In this instance it is moving data to the
timer comparison register.

[Hewlett-Packard Company 1995

Find the failing code sequence in the system
through shmooing or functional tests.

Insert mtctl instruction into the failing code
sequence to cause interval timer to time out at a | !
particular clock cycle.

Arm trigger in the test circuitry through the test
access port (TAP) interface.

Run the modified code sequence, causing the
interval timer to trigger the test access port
to take a one-state snapshot of the chip logic.

Scan the sampled values out of the TAP pins
serially while the chip continues to run
uninterrupted.

Compare the snapshot taken above to values
from the simulation or from a known good snap-
shot taken at the same point with another chip.

Do
the results
differ?

Sample
subsequent
state.

Debug the failure to the failing circuit by
examining the differences between the known
good sample and the sample just taken.

Fig. 6. Sample-on-the-fly testing process.

If another sample is desired, the above procedure is simply
repeated. Fig. 6 summarizes the sample-on-the-fly process.

Results. Although sample-on-the-fly testing capability required
careful electrical and timing design, it has proven to be very
effective for debugging. It was vital at system frequencies
approaching 100 MHz, since our traditional external debug-
ging hardware was unable to function at this frequency be-
cause of electrical constraints. Sample-on-the-fly testing be-
came our only debugging tool in systems with
high-frequency critical paths. It was used several dozen
times in high-speed characterization and led to the resolu-
tion of several slow timing paths. It is clear that as CPU fre-
quencies increase, more debugging circuitry will need to be
included directly on the chip to assist in diagnosing function-
ality, speed, and electrical failures.

Debug Mode

The sample-on-the-fly technique allowed us to observe the
values present at many nodes, at one very specific point in
time, and at any operating frequency. Since this test tech-
nique uses the test access port to observe these values, it
provides information about the chip state at a relatively low
bandwidth. This information is an extremely valuable diag-
nosis tool for designers because it enables them to know
exactly when a problem is occurring.

[J Hewlett-Packard Company 1995

Sometimes, especially when a problem is not yet fully un-
derstood, a higher-bandwidth path to diagnostic information
is useful to designers. To allow designers access to larger
amounts of information across broad slices of time, we
added a debug mode to the PA 7100LC. This mode makes
available externally the values of several key internal buses
and control interfaces, on a state-by-state basis.

Software can place the chip in the debug mode by executing
a series of CPU diagnostic instructions. Software can also be
used to choose a set of signals to be made externally visible.
These signal sets were carefully chosen by the chip’s design-
ers as being indicative of the internal state of the CPU. Exam-
ples of signal sets that can be made visible using the debug
mode include:

Internal instruction and data buses

CPU to memory and I/O controller interface

Key cache controller state information.

When the chip is operating in the debug mode, it identifies
unused cycles on the I/O bus and uses them to drive the
selected debug information onto the I/O bus. The debug
circuitry can be programmed by software either to throw
away debug data during states when the I/O bus is unavail-
able, or to cause the CPU pipeline to stall during these states
so that no debug information is lost.

Externally driving debug information allows engineers to see
a sufficient amount of state information on a large enough
number of CPU states to be able to quickly direct further
efforts at locating postsilicon problems.

Both debug mode and sample-on-the-fly turned out to be
invaluable debugging aids in the highly integrated environ-
ment of the PA 7100LC.

Conclusion

Supporting design methodologies allow implementation of
the features that a product requires to meet its design goals.
The methodologies used to synthesize, place and route, sim-
ulate, verify, and test the PA 7100LC processor were crucial
to the processor’s success.

References

1. P. Knebel, et al, “HP’s PA 7100LC,” A Low-Cost Superscalar PA-
RISC Processor, Compcon Digest of Papers, February 1993, pp.
441-447.

2. S. Undy, et al, “A Low-Cost Graphics and Multimedia Workstation
Chip Set,” IEEE Micro, Vol 14, no. 2, April 1994, pp. 10-22.

3. T. Asprey, et al, “Performance Features of the PA 7100 Micropro-
cessor,” IEEE Micro, Vol. 13, no. 3, June 1993, pp. 22-35.

4. E. Delano, et al, “A High Speed Superscalar PA-RISC Processor,”
Compcon Digest of Papers, February 1992, pp. 116-121.

HP-UX is based on and is compatible with Novell's UNIX" operating system. It also complies
with X/Open's* XPG4, POSIX 1003.1, 1003.2, FIPS 151-1, and SVID2 interface specifications.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

XIOpen is a trademark of X/Open Company Limited in the UK and other countries.

April 1995 Hewlett-Packard Journal 35

