COBOL SoftBench: An Open Integrated

CASE Environment

With the aid of a mouse and a menu-driven interface, COBOL
programmers new to the UNIX™ operating system can improve their
productivity with a tightly integrated toolset that includes an editor,
compiler, debugger, profiler, and other software development tools.

by Cheryl Carmichael

Many large companies today are still developing mission
critical COBOL applications, and they want tools to help
them easily transition their developers to open systems.

In 1991, we recognized that many of our customers were
moving MIS applications to the UNIX operating system using
C SoftBench and C++ SoftBench. These customers asked for
a more business-oriented language—specifically COBOL. In
addition, HP-UX* had just been recognized as the leading
UNIX system environment for MIS organizations moving
from mainframes to open systems.

We heard customer concerns about moving MIS development
teams to open systems. They wanted to minimize the loss of
developer productivity associated with learning a new operat-
ing system and new development languages and rewriting
their custom applications.

The COBOL SoftBench family is based on HP MF COBOL,
Hewlett-Packard’s implementation of Micro Focus COBOL,
which is based on technology from Micro Focus, Ltd.
COBOL SoftBench leverages a development team’s COBOL
expertise and protects its investment in COBOL applications.

When we were designing COBOL SoftBench we aimed at
novice UNIX-system users. These users minimize their learn-
ing curves with the aid of a mouse and a menu-driven inter-
face. Several tools have easy-to-use graphical user interfaces,
and common UNIX commands are accessible via system
menus.

COBOL SoftBench improves developer productivity with a
tightly integrated toolset that includes an editor, compiler,
performance analyzer, debugger/animator, static analyzer, file
comparator, email, and more. Other items provided by
COBOL SoftBench to improve productivity include:
Graphical views of complex programs

Dozens of integrated third party tools

Provisions for developers to integrate their own tools using
the SoftBench encapsulator?

The ability to automate repetitive tasks using the SoftBench
message connector?

Support for mixed-language development with

COBOL/C SoftBench and COBOL/C++ SoftBench.

82

June 1995 Hewlett-Packard Journal

COBOL SoftBench

Our tightly integrated toolset increases developer produc-
tivity. The interactions between the SoftBench programs that
make up this toolset are shown in Fig. 1.

* The SoftBench program editort edits program files, shows
the column and line location of the cursor, accesses version
control for a file, and performs common UNIX commands
on a file.

* The SoftBench program buildert controls compilation and

linking of application files, provides views and jumps to

source code for compilation errors, creates makefiles, and
displays makefile dependency relationships graphically. The
program builder also supports embedded CICS (Customer

Information Control System) statements and SQL applica-

tions.

The SoftBench COBOL animator uses an enhanced window

interface to the Micro Focus COBOL animator to debug

t See reference 3 for more information about these SoftBench tools.

SoftBench
Static
Analyzer

SoftBench
COBOL
Animator

SoftBench SoftBench
Program

Builder

Program
Editor

SoftBench
COBOL
Profiler

Fig. 1. Interactions between SoftBench tools that make up the CO-
BOL SoftBench toolset.

executable COBOL programs, provide access to native com-
mands for expert Micro Focus users, display data monitors,
and allow mixed-language debugging.

The SoftBench static analyzer enhances visual code brows-
ing by graphical or textual representation of program struc-
ture.

The SoftBench COBOL profiler uses an enhanced window
interface to the Micro Focus COBOL profiler to supply de-
tailed statistics about the run-time performance of a COBOL
program. It determines performance bottlenecks and helps
the developer make changes for the greatest improvements.

Other integrated tools that are not shown in Fig. 1 include:
The SoftBench development managert handles file and
directory management and version control.

Computer-based training comes with each SoftBench prod-
uct. Each computer-based tutorial tells about individual tools
and exposes the user to a wide variety of SoftBench capabil-
ities using several hands-on training examples.

Friendly User Interface

COBOL SoftBench developers are buffered from the stan-
dard UNIX command line entry format. They select buttons,
toggle options, choose menus, and drag-select text. Typing
is left for data entry and editing source code. The following
model shows how a user would view the UNIX operating
system through the COBOL SoftBench interface.

The SoftBench development manager directory list presents a
list of files in the currently viewed directory and allows vari-
ous actions to be performed on any file. For example select
Directory: Show Full Listing to view a complete directory listing
including permissions, owner, group, size, and modification
time (see Fig. 2). The files displayed in the directory list can
be limited by using predefined or custom filters.

Within the directory listing, a single line, multiple lines, or

even discontiguous lines can be selected for the same action.

To select discontiguous files, hold down the Ctrl key while
clicking the left mouse button on each file name. For exam-
ple, to compile scattered source files, select the discontigu-
ous .chl files shown in Fig. 3 and then choose Actions and then
one of the compile selections.

A

katal 488

T2 Cur 24 14011 ERECS
AAAT Qor 75 18:11 Makefile
T4 Mgy 21400 KLY
BIT4E Ot 24 14:11 ATADKAT
GUUEL w28 14213 Slabs sedb
12915 Mav 1 15:49 Anddefect.chl

—r ihwryl e

= 1 cheryl ses
== —r——r—— | tharyl az
—rwmr—sr—x 1 cheryl s
- = byl e
— 1 charyl =
JE

2209 Ul 5 185 17 haanlen <1y

lezale <l
cale.csi

sl b 17 48 bl iy

= 1cheryl ses
— 1 iharyl
—rw=r—-r=— 1 chary

4752 Mow 7 17:48 infeale.int
220 O 24 1410 bl il
.

T2 14T nbaloapl
164 Qe 20 19:11 infealosub.c
AU DL 28 18 1 inlseloaobig

" Crnate...

Pt ines
Lo lut Havursia by

liwnuine

Miveelney
Pusl
Static Leo

—rexr—sr—x 1 chergl sen AT1 ek 29 19:11 renet_dema Uprate | isting Jear
Ao Ahersl s U S 81 A sy e Fall b - Leal
i reel ey
o Eikl * - bwild
Stal e hnialvsis - Dicectory
W+ +uzvcloper -
——————————————— Stalic Aual
L CORM Sewrat PR el o
i el] Limhay S5 storn - COBOL Copy
infoals |Seeans Tewritan el
[RI T
COBOL Stat
CORGL. Semb
COBGL [nle
anteals ot LKL Prit
————————— B
=

Fig. 2. A directory listing produced by using the SoftBench develop-
ment manager’s Directory: Show Full Listing menu item.

SoftBench = Development Manager
Context RCS Directory | Actions | System
Line—- Context: urutu:/users

Current: urutu:/user:E
TS C 0Mpile to Intermediate [en)
.softhench.env

Compile to Generated Code

EXECs

Makefile Compile to Shared Generated Cod
RCS Compile to Object

README

Print
Static.sadb b
findde b
header.cpy
infcalc

(L Source

Wersioned - COBOL Copylihk
Executable

infcalc. COBOL Source
infcalc.csi COROL Static Info
infcalec.idy COBOL Symholic Info 1
infcalc.int COBOL Intermediate
infcalc.ipf COBOL Profile Data
infcalc.prf COBOL Profile Report

[T

¥ ¥

Fig. 3. Selecting several COBOL files for compilation.

Moving about in a directory only requires a mouse move-
ment. To change to another directory and view its contents,
move the mouse focus to the context line. While holding
down the right mouse button, move through directories until
the desired directory is highlighted. Release the mouse but-
ton and a new directory list displays.

The SoftBench development manager helps manage files and
directories on the developer’s computer and across the net-
work. From the File: menu item, the developer can easily
choose Edit, Copy, Rename, Import, or Delete depending upon the
task.

A number of commonly used UNIX commands are available
from the System menu. These include:

Changing a file’s permission

Printing a file with a number of printer options

Checking the spelling in a file

Counting lines, words, and characters in a file

Creating a backup copy of a file

Updating the modification time for a file.

Supporting Code Use Model

New COBOL SoftBench users want to leverage their COBOL
development expertise and protect their investment in exist-
ing COBOL applications. The following example shows how
a COBOL developer who is maintaining unfamiliar code
would use COBOL SoftBench to tackle a problem that might
arise in a COBOL software maintenance environment.

In this scenario the developer receives a complaint that the
inflation calculation program (infcalc.chl) takes too long to
start. To deal with this complaint, the developer must
quickly identify the performance bottleneck, fix the problem,
and verify that the fix does indeed improve the applications
performance.

Source Code Control. The inflation calculation program has a
fileset containing infc,alcsub.c, infcalc.chl, header.cpy, and Makefile.
The developer sets up a working directory using the Soft-
Bench development manager and checks these files out of a
revision control system. The revision control systems that
COBOL SoftBench can be configured to use include RCS,
SCCS, PVCS, ClearCase, and others.

June 1995 Hewlett-Packard Journal 83

e ——————————
i SoftBench — Program Builder > ﬁ

File Edit Buffer Makefile Actions Options ﬂelpl

Context: hpfccar: /users/cheryl/Demo

Build Options: | Target: [infcalc. inﬂ |
——————————————————————————

’

Press the Option Selection button to see the run—time settings or supply the COBOL compile settings below.
Option Selection: | COBOL Compile Settings £

COBOL Compile Settings

Environment Variable File: |

Command Line Options: |

Other Directives: |

= | Force Static: Force Optimize:

£ | Profile: | YES
NO

Animate: [YES|

Option Sets

System Setting

[Listing and Error Control... Speed and Size Control... [Dialect and Reserved Words...

[National Language Support...

Custom Run—Time System... [

Cross Platform Compatibility...

Fig. 4. The SoftBench program builder and the COBOL compile
settings dialog box.

Compile Options. The application must be compiled to enable
the generation of performance statistics. Using the SoftBench
program builder, the developer enables the Profile option with
a mouse click in the COBOL compile settings dialog box and
compiles the application (Fig. 4). The COBOL SoftBench
environment accepts many control options which tailor the
compile for special needs.

Micro Focus Run-Time Settings. Over 200 options are available
in the Micro Focus COBOL development environment.
COBOL SoftBench provides a way to view and change op-
tions and values easily. Over 50 of the most common op-
tions are available from the SoftBench program builder via
the COBOL compiler settings and COBOL run-time settings
dialog boxes.

Application Execution. The application is executed to generate
performance data. When the developer runs the application
from the SoftBench program builder, the files infcalc.rpt and
inflcalc.ipf are created.

Application Performance Analysis. The SoftBench COBOL pro-
filer makes it easy to determine where the application is
spending its time. Remember that for our example, the per-
formance complaint is about slow startup. The developer
notices that a large amount of time is being spent in the ini-
tialization module (Fig. 5).

COBOL Profiler — Sort Options
Ordering:

> Ascending

<> Descending

QTntal Time

<> Entries

<> ms/Entry

<> Program Name

<> Section Name

Q Paragraph Name
<> Program:Section
Q Program:Paragraph

Q Program:Section:Paragraph

o

Fig. 6. The ten options for sorting performance statistics. In this
example the modules in the program being evaluated will be sorted
according to the amount of time spent in each module.

Close

The SoftBench COBOL profiler is an encapsulation of the
standard Micro Focus COBOL profiler tool. The COBOL Soft-
Bench implementation enhances the Micro Focus profiler
listings of performance data by displaying the data in a Soft-
Bench window. Flexible reporting capabilities are available.
For example, there are ten ways to sort performance statis-
tics (see Fig. 6). Using the Options: Display Options from the pro-
filer window, the developer can also choose to view only
entered data, nonentered data, or all the paragraphs in the
program.

- SoftBench — COBOL Profiler

File Actions

Options

Frogram

Context: urutu:/users/cheryl/Demo infcalc.prf
Sort: Ascending by Program Display: Entered Paragraphs Only
%Time TotalTime Entries ms/Entry Paragraph Section
56. WIN
34, 140 1000 0] 150-ZERO-FIELD OOO-MAIN IN
' 20 1 20 600-READ-MODULE-SCREEN OOO-MAIN IN
2. 10 10 1 301-PRINT-MODULE OOO-MAIN IN
2. o] 1 o] 200-CALC-MODULE OOO-MAIN IN
Q. 0] 1 0] 0OO-MAIN-MODULE OOO-MAIN IN
Q. 0] 1 0] JOO-WRITE-MODULE OOO-MAIN IN
Q. [o] 1 [o] 900-TERMINAT ION-MCDULE OOO-MAIN IN
0.00% 0] 1 0] OOO-MAIN IN
1 . -

1 Fig. 5. The profile statistics for

} the calculation program.

84 June 1995 Hewlett-Packard Journal

Fila Edit Buffer Procedure Block Show System Stack Options Help
File: hpfcear:/users/cheryl/Demo/infealc.chl Taxt [W]
000-MATN-HODULE . A

PERFORM 100-INITIALIZATION-MODULE.
PERFORM 200-CALC-MODULE

UNTIL NO-MORE-REGORDS.
PERFORM 900-TERMINATION-MODULE.
STOP RUN.

. Initialize inflation rates

Accept inflation rates from the command line (cobrun
If inflation rates were not provided then use defaul
Initialize record counter teo zero

. Open the repert file for ocutput

Read user input |]

HHHSHHS
O N =

Create report headers

TUO—INITIALLZATION—MODULE .

MOVE 0.00 TO WS-RATE-1
WS—RATE-2.

ACCEPT WS-RATES FROM COMMAND-LINE.
IF WS-RATE-1-X = " "

HMOVE 0.01 TO W5-RATE1

HOVE 0.03 TO WS—RATE2
ELSE
MOVE W5-RATE-1 TO WS-RATE1
HMOVE WS-RATE-2 TO WS—-RATE2
ACGEPT DUMMY-FIELD.

DISPLAY "INFLATION RATES USED THIS RUN™ AT ©525,
DISPLAY ™ AT @625.

[z ¥ 13}

Line: 127] Column: B4]

Fig. 7. The Softbench program editor showing the initialization
module.

Program Structure. The SoftBench static analyzer allows the
developer to save time in searching for program errors in
unfamiliar COBOL code. From the SoftBench COBOL pro-
filer, the developer double clicks on the line in Fig. 5 show-
ing the initialization module. This action brings up the Soft-
Bench program editor displaying the source code, starting at
the beginning of the selected module (Fig. 7).

The developer needs to learn about the relationships between
the many parts that make up the application without having
to read the unfamiliar code. Using the mouse button, the
developer drag-selects 000-MAIN-MODULE and chooses the Show:
Definition() menu item to bring up the SoftBench static ana-
lyzer. Now, the developer can quickly display the program
structure graphically using the Graph: Query Graph menu item
(Fig. 8).

Existing Relationships. The static query graph shows that the

initialization module performs the 150-ZERO-FIELD paragraph.

Looking back at the SoftBench COBOL profiler in Fig. 5, the
developer sees that this paragraph is called 1000 times!

Within a very short time, the developer knows where the
program is spending time, has an understanding of the pro-
gram structure, and is ready to debug at a specific paragraph.
In other words, the developer has a good start toward solving
the problem.

Program Animation. Programmers frequently need to under-
stand a program’s logic. By dynamically watching lines of

source code execute, they can identify where the behavior
of the program differs from what they intended.

Using the SoftBench COBOL animator, the developer selects
the line of code that performs the paragraph in question,
PERFORM 150-ZERO-FIELD UNTIL ZERO-COUNTER = 1000 (Fig. 9).
Choosing Breakpoints: Zoom executes the program through the
step just before the perform statement in question. While the
animator is paused, the developer can view the code that is

i SoftBench — Static Analyzer

File Edit Bufter Show Graph Queries Options Help
Context: hpfccar:/users/cheryl/Demo File Set: Open
(): [6@6-MATN-MCDULE | £15coping
Query: Definition Rosults: 1 Scoping Used: None
©0O-MAIN-MODULE. | ﬁ

T T
Static Analyzer — Static Graphs

li_nfcalc.cbl (112), INFCALC:

Grapn Selected

93]

Options

Query Graph

e T N | A ez
. v \ B00-READ-NODILE SCREEN 7 o Gorema
008 HATH-HOTULE .= w \ 700-HEADING-MODULE ,‘ 301 -PRINT-
tea 200-CALC-MODULE |e!
VEIEER
S e
e “ny iSDI—PRINT
& \ 300-YRITE-MODULE
-»]

St
| Query Queue Length: 0 A

Fig. 8. The SoftBench static analyzer and the static graph showing
the structure of the calculation program.

about to be executed. Looking at this paragraph reveals that
the WS-ARRAY array elements are being set to zero.

The developer now selects the Animate button. The animate
mode single steps through the program. As each line exe-
cutes, watch windows show the name and value of all vari-
ables that change. The developer finds that the program
executes this loop 1000 times, just as it was intended.

Textual Static Queries. The Show menu shown in Fig. 10
helps locate any place a specified identifier is referenced.
From the SoftBench COBOL animator, the developer drag-
selects the WS-ARRAY identifier and then chooses Show: Refer-
ences(). There are only two references: the declaration and
the perform statement.

A more experienced developer could have avoided the ani-
mator steps by editing the 150-ZERO-FIELD node from the static

Fie Eroabpoints Ewecute Miew Exsmine Show Help
Content: hpEccar fusersfeheryl/Deme infeale. int
Filaname: infcalz, cbl Status: Loaded Tougs Soeen
(4 |PERFORN 150—2ERO-FIELD UNTIL ZERC-COUNTER = 16| Tear-off
ggz 1MI-EERC—FIELD, St Breakpoints:
o8 st Zoom Menu
07 Lancel A1l
E3camimss nensn
200% 1. Move wier anbut variable values to anethor worl = 10n
210+ Z. Check if 25 lines have been printed om Ceport, LAY s o
211% 3, Gall “infcalosub™ subrowtine to caleniats infl. |loe) o
212+ 4. Weite report limes for last user input o
213+ 5, Read weer anpub again On Count () E
21 Zoam nenenl
215 200-GALC—MODILE.
216 PERFORM GBMI=R EAD=NODULE=SCREEH.
217 HOWE COST-IN TO HL-COST-OUT GOS I Watch
218 HOWE ITEM-IH T3 HL- ITEH—IT. . c
219 MGVE DESCRIPTION-IN TO WMS-ARRAY {10}——+ Windows
220 IF WS-LINE-CTR » 25 10000028F: 20 2¢ [1]
an PEREORH 7od-HEADIW, #+——
222 WRITE REPORT=OUT EROM He weemiiis o atoiw noemeeeed 2 LINES.
[y dmate—in foal B¥a 1 =H3-Sp,
help wiew align Emexchange BRlwwhere lock=up ord 3]
nimats Qten Heh Boom nxi Mrin @t @k Qor Bury Bind Bocats Bt
Keyboard intervupt
[Taen [80 [Zoom | cosd: S Paga: [Frev] [Fest
posd:
[Pertorm Stap] [Ammmate [wn] ey [Fea] [Last]

Fig. 9. The SoftBench COBOL animator showing a tear-off Breakpoints:
Zoom menu and two examples of watch windows. A tear-off menu is
a group of menu commands that have been “torn off” from their
parent menu. The parent menu in this case is Breakpoints. A tear-off
menu allows the user to keep on the workspace frequently used
menu items even after the parent menu item is no longer selected.
Fig. 3 shows case in which a menu could become a tear-off menu.
By clicking on the dashed line, the menu items shown below the
Actions command would become a tear-off menu.

June 1995 Hewlett-Packard Journal 85

Show Tear—off =} Program Tear—off

_ﬁ_efel‘EnCES () . List All Programs
CALLS To ()

CALLS Within ()

Declarations (Y

Definition ()

Nested Programs in (

Source Filas of ()
Data division Tear—off

1/O Filesin ()

FDsin ()

SDsin ()

CDsin ()

RDs in ()

Working Storage items in ()
EXTERNAL/LINKAGE items in (

Local items in ()

Source Files

Pattern Match ()

Tests ()
Program

Data division

=aiProcedure division Tear—o
Sections and Paragraphs in
Sections in ()
PERFORMs/GOTOs To ()
PERFORMs/GOTOs Within ()

Fig. 10. The Show menu is used to help locate where a specified
identifier is referenced in a program.

graph and checking the references for WS-ARRAY from the
SoftBench program editor.

Source Code Modification. This defect fix is a simple one:
delete the unnecessary perform loop. From the SoftBench
COBOL animator, the developer chooses File: Edit and edits
infcalc.cbl. Then from the SoftBench program editor, the
developer searches for the ZERO-FIELD string, removes the
unused code, and saves the changes to the file.

If the developer had needed to make major changes to the
code, the SoftBench program builder would take away the
pain of finding compile errors. After the developer saves and
compiles the program, any errors found are displayed in the
Build Output area. To browse and fix errors, the developer can
select the First button or select any error in the list. The asso-
ciated source file appears in the SoftBench program builder,
with the text cursor located at the beginning of the line
where the error was detected (Fig. 11).

Improved Application Performance. Before the code is returned
to the version control system and production, it is important
to confirm that a lower percentage of time is spent in the
initialization module. The developer recompiles the program,
with the Profile option still enabled, runs the program again
and from the SoftBench COBOL profiler, selects the Entered
Paragraphs Only display option. This shows that the 150-ZERO-
FIELD paragraph is not entered during the application’s exe-
cution (Fig. 12).

Rt iberal = Frogiam 15 ik

1 Elle Pt ki Mekefle Agtlons Qptkens Hak:

Conle: hpfogar fusers/ohery L/ Deme

Build Cpians: |

| Targer finteale. int |

cob: = 553-5
[T
bz fied

cob: inicalc.cbl BOOBOHOIES OAT:
cob: * 553-8 A "WHEN" phrase did not have a matching wverb and wae discarded.
cabt Jusefbinfeub: erear(s) in compllation: infcale.wbl

#=% Ercer code 12

Ells Achons Optons Help

Contaxt. hpfecer:fusers/cheryl/Deme infcalo.pri
Soit: Agcending by Progran Displsy: Entered Paragraphs Only
%Time TotalTime Entries ms/Entry Paragraph

Section Program.

4Z.31% e 1 114 TUE—INITIALIZATION-MOMILE G3U-MAIN INF
34.02% 98 4 43 GE8-READ—HOMILE-SCREER GF0-HAIN INF
T. 6% 28 20 1 3@1-FRINT-HODULE GO0-HAIN INF
T.60% 8 2 10 208-CALC—HMODULE OI0-HAIN INF
F.E5% 148 2z 3 308-WRITE-HODULE OF0-HAIN INF
3,858 18 1 18 908-TERHINAT [ON-MODULE O30-HAIN INF
o, B0 L] 1 L] B06-HATH-MODOLE oa0-HAIN TNF
. 00% L] 1 LE] DEO=-NALIN INF

Fig. 12. Profile of the calculator program after it is fixed.

Mixed-Language Model

Development teams can take advantage of other technologies
with COBOL SoftBench. For example, consider the devel-
oper who is writing a mixed-language application. One pro-
gram module is written in COBOL, while another is a sub-
routine written in C. The COBOL module calls the C
subroutine.

To illustrate the COBOL SoftBench model, consider the sce-
nario in which the developer has set up a working directory
using the SoftBench development manager and is using ver-
sion control on the the two source files mixedtest.chl and cpart.c.
The program is not working as the developer expects. To
help determine what is wrong with the program, the Soft-
Bench COBOL animator and the SoftBench program debug-
ger (for the C subroutine) are used.

Custom Run-Time System. With a mixed-language application,
a custom run-time system is part of the application. From the
SoftBench program builder, the developer creates a makefile,
which detects mixed source code files. With this makefile,
COBOL SoftBench will automatically create a custom run-
time system. Next, the developer sets compile options to set
up both programs for debugging and then builds the appli-
cation.

To verify that the makefile is working as expected, the de-
veloper brings up the dependency graph browser (Fig. 13).
This graph shows cpart.c is compiled to an object file and
mixedtest.chl is compiled to an intermediate target.

Mixed-Language Debugging. Since the COBOL program is the
entry point in this example, the developer starts from the
SoftBench COBOL animator, and the mixedtest.chl source code
is displayed (Fig. 14). The developer chooses File: Soft-debug
Adopt to display the SoftBench program debugger window.
After setting a breakpoint at the C procedure entry,

T T
=[Program Builder — Dependency Graph [- 100

Layout: 45 Tree ¢ Graph 4 Manual

Il Recursively Show Dependencies Makefile Name: Makefile

Solpctes ~>| [Graph =>

Display: |l Header File Nodes [] Macro Nodes [l Implicit Nodes

mixedtest.chl
sC 1

a1} Ex - |

Fig. 11. The SoftBench program builder showing the line in the
program where the error occurred.

86 June 1995 Hewlett-Packard Journal

Fig. 13. Dependency graph to verify that the makefile is correctly
identifying a mixed-language file.

SoftBench — Program Debugger

Edit Buffer Stati

Fil Execution Breakpoints Watchpoints Tracepoints

Show

Context: urutu:/users/cheryl/Mized mrt=

Help |

Options

(): [zpary "

PC Location: _select F [

File Breakpoints

Execute View Examine Show

File: urutu:/users/chei |Context: urutu:/users/cheryl/Mixed mixedtest.int

Filename: mixedtest.chl Status: Loaded

#include <stdio

SoftBench — COBOL Animator

Toggle Screen

O:

int cpart{arg)

12 PROCEDURE DIWISION.
13 CALL-C SECTION.

char *arg ;

o (8 iif (stromp(14 r [
return(15 DISPLAY ARG-STRING.
16 IF RETURN-CODE NOT = ZERO
else return 17 DISPLAY "FAILURE"
3 18 ELSE
19 DISPLAY "SUCCESS"
20 END-IF
- . 21
22 MOVE "PURPLE COWS" TO ARG-STRING.

Lewel=01-Speed=5—)8

ury Hind

X 23 CALL "cpart" USING ARG
[Conti 24 DISPLAY ARG-STRING.
23 IF RETURN-CODE NOT = ZERO
26 DISPLAY "FAILURE"
Stopped at: _sele 27
Breakpoint{s) set. 28 ELSE
H 29 DISPLAY "SUCCESS"
30 END-IF
o 3
- linimate-mizedtest
- Debugger Input: || ~he lp ~view =align =ex:hange =where =look—up
P nimate Ftep fch Bo Boom nz-[f Brim @st Brk Bov

B 1
ocate Bt Eo

Fig. 14. The SoftBench COBOL

Step Go Zoom Set Page: -_Prev -“First '
| | | Speed: 55 X animator and the SoftBench pro-
| [Perform Step| | Animate | o | 1 gram debugger being used to de-
i : bug a mixed-language program.
the developer selects the Continue button, which returns the Acknowledgments

control back to the SoftBench COBOL animator.

With both debuggers started, the developer is ready to debug
the application using both the SoftBench COBOL animator
and the SoftBench program debugger (collectively called
debuggers).

Control transfers between the debuggers as the application
executes the program module or the subroutine. The devel-
oper can apply all the features of either debugger, such as
setting breakpoints, watching variables, or setting variable
values.

COBOL and C++ Mixed Program. When a custom run-time sys-
tem includes C++, the C++ language requires that the entry
point be the C++ main function. The developer starts the
SoftBench program debugger and the main.c source code is
displayed. Choosing File: Animate Adopt displays the SoftBench
COBOL animator window. The program begins execution at
the entry point displayed in the SoftBench program debug-
ger window, and again control passes between the debug-
gers, depending upon the application’s behavior.

Conclusion

HP’s integrated application development toolsets, COBOL
SoftBench, COBOL/C SoftBench, and COBOL/C++ SoftBench
help COBOL programming teams easily transition to open
systems. In addition, these products help position the teams
to transition to new application development technologies.

The COBOL SoftBench products involved many people. Spe-
cial thanks go to our COBOL SoftBench product team man-
agers Lee Huffman and Dan Magenheimer, our product mar-
keting engineer Pat Hafford, my learning products team
Margee Daggett and Tom Huibregtse, and our R&D team
Lynnet Bannion, Paul Faust, Jay Geertsen, Robert Hecken-
dorn, Mike Stabnow, Wade Satterfield, and lead engineer
Alan Meyer. Additional gratitude to our partners at HP’s Gen-
eral Systems Division and California Language Labs, and the
Software Engineering Systems Division’s core SoftBench
team.

References

1. B.D. Fromme, “HP Encapsulator: Bridging the Generation Gap,”
Hewlett-Packard Journal, Vol. 41, no. 3, June 1990, pp. 59-68.

2. J. J. Courant, “SoftBench Message Connector: Customizing Soft-
ware Development Tool Interactions,” Hewlett-Packard Journal, Vol.
41, no. 3, June 1994, pp. 34-39.

3. C. Gerety, “A New Generation of Software Development Tools,”
Heuwlett-Packard Journal, Vol. 41, no. 3, June 1990, pp. 48-58.

HP-UX 9.* and 10.0 for HP 9000 Series 700 and 800 computers are X/Open" Company
UNIX 93 branded products.

UNIX'is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

XIOpen is a registered trademark, and the X device is a trademark, of X/Open Company
Limited in the UK and other countries.

June 1995 Hewlett-Packard Journal 87

