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ABSTRACT
                 
The AlphaStation 600 5-series workstation is a high-performance, 
uniprocessor design based on the Alpha 21164 microprocessor and 
on the PCI bus. Six CMOS ASICs provide high-bandwidth, 
low-latency interconnects between the CPU, the main memory, and 
the I/O subsystem. The verification effort used directed, 
pseudorandom testing on a VERILOG software model. A 
hardware-based verification technique provided a test throughput 
that resulted in a significant improvement over software tests. 
This technique currently involves the use of graphics cards to 
emulate generic DMA devices. A PCI hardware demon is under 
development to further enhance the capability of the 
hardware-based verification.

INTRODUCTION

The high-performance AlphaStation 600 5-series workstation is 
based on the fastest Alpha microprocessor to date -- the Alpha 
21164.[1] The I/O subsystem uses the 64-bit version of the 
Peripheral Component Interconnect (PCI) and the Extended Industry 
Standard Architecture (EISA) bus. The AlphaStation 600 supports 
three operating systems: Digital UNIX (formerly DEC OSF/1), 
OpenVMS, and Microsoft's Windows NT. This workstation series uses 
the DECchip 21171 chip set designed and built by Digital. These 
chips provide high-bandwidth, low-latency interconnects between 
the CPU, the main memory, and the PCI bus. 

This paper describes the architecture and features of the 
AlphaStation 600 5-series workstation and the DECchip 21171 chip 
set. The system overview is first presented, followed by a 
detailed discussion of the chip set. The paper then describes the 
cache and memory designs, detailing how the memory design evolved 
from the workstation's requirements. The latter part of the paper 
describes the functional verification of the workstation. The 
paper concludes with a description of the hardware-based 
verification effort. 

SYSTEM OVERVIEW

The AlphaStation 600 5-series workstation consists of the Alpha 
21164 microprocessor, a third-level cache that is external to the 
CPU chip, and a system chip set that interfaces between the CPU, 
the memory, and the PCI bus. The DECchip 21171 chip set consists 
of three designs: a data slice, one PCI interface and 
memory-control chip (called the control chip), and a 



miscellaneous chip that includes the PCI interrupt logic and 
flash read-only memory (ROM) control. The Intel 82374 and 82375 
chip sets provide the bridge to the EISA bus.[2] Figure 1 shows a 
block diagram of the workstation. 

[Figure 1 (AlphaStation 600 5-series Workstation Block Diagram) 
is not available in ASCII format.]

The SysData bus transfers data between the processor, the CPU's 
tertiary cache, and the data slices. The 128-bit-wide SysData bus 
is protected by error-correcting code (ECC) and is clocked every 
30 nanoseconds (ns). The data slices provide a 256-bit-wide data 
path to memory. Data transfers between the PCI and the processor, 
the external cache (typically 4 megabytes [MB]), and memory take 
place through the control chip and four data slices. The control 
chip and the data slices communicate over the 64-bit, 
ECC-protected I/O data bus.

The major components and features of the system board are the 
following:

    o   The Alpha 21164 microprocessor supports all speed 
        selections from 266 to 333 megahertz (MHz).

    o   The plug-in, external write-back cache (2 MB to 16 MB) 
        has a block size of 64 bytes. Access time is a multiple 
        of the processor cycle time and is dependent on the 
        static random-access memory (SRAM) part used. With 12-ns 
        SRAMs, typical access times are 24 ns for the first 128 
        bits of data, 21 ns for remaining data.

    o   The system board contains a 256-bit data path to memory 
        (284 megabytes per second [MB/s] for sustained CPU reads 
        of memory).

    o   From 32 MB to 1 gigabyte (GB) of main memory can be used 
        in industry-standard, 36-bit, single in-line memory 
        modules (SIMMs). All memory banks support single-sided 
        and double-sided SIMMs.

    o   Eight option slots are available for expansion: four PCI, 
        three EISA, and one PCI/EISA shared slot. The system 
        design minimized logic on the mother board in favor of 
        more expansion slots, which allow customers to configure 
        to their requirements. The system uses option cards for 
        small computer systems interface (SCSI), Ethernet, 
        graphics, and audio.

    o   The system supports 64-bit PCI address and data 
        capability.

    o   Due to its synchronous design, the system's memory, 
        cache, and PCI timing are multiples of processor cycle 
        time.



    o   The system provides an X bus for the real-time clock, 
        keyboard controller, control panel logic, and the 
        configuration RAM.

Data Slice Chips 

Four data slice chips implement the primary data path in the 
system. Collectively, the data slices constitute a 32-byte bus to 
main memory, a 16-byte bus to the CPU and its secondary cache, 
and an 8-byte bus to the control chip (and then to the PCI bus).

Figure 2 shows a block diagram of the data slice chip. The data 
slice contains internal buffers that provide temporary storage 
for direct memory access (DMA), I/O, and CPU traffic. A 64-byte 
victim buffer holds the displaced cache entry for a CPU fill 
operation. The Memory-Data-In register accepts 288 bits 
(including ECC) of memory data every 60 ns. This register clocks 
the memory data on the optimal 15-ns clock to reduce memory 
latency. The memory data then proceeds to the CPU on the 30-ns, 
144-bit bidirectional data bus. A set of four, 32-byte I/O write 
buffers help maximize the performance of copy operations from 
memory to I/O space. A 32-byte buffer holds the I/O read data. 
Finally, there are a pair of DMA buffers, each consisting of 
three 64-byte storage areas. DMA read operations use two of these 
three locations: the first holds the requested memory data, and 
the other holds the external cache data in the case of a cache 
hit. DMA writes use all three locations: one location holds the 
DMA write data, and the other two hold the memory and cache data 
used during a DMA write merge.

The data slice allows for simultaneous operations. For instance, 
the I/O write buffers can empty to the control chip (and then to 
the PCI) while a concurrent read from CPU to main memory is in 
progress.

[Figure 2 (Data Slice Block Diagram) is not available in ASCII 
format.]

Control Chip 

The control chip controls the data slices and main memory and 
provides a fully compliant host interface to the 64-bit PCI local 
bus. The PCI local bus is a high-performance, 
processor-independent bus, intended to interconnect peripheral 
controller components to a processor and memory subsystem. The 
PCI local bus offers the promise of an industry-standard 
interconnect, suitable for a large class of computers ranging 
from personal computers to large servers.

Figure 3 shows a block diagram of the control chip. The control 
chip contains five segments of logic:



    o   The address and command interface to the Alpha 21164 
        microprocessor

    o   The data path from the PCI bus to the data slices by 
        means of the I/O data bus

    o   DMA address logic, including a 32-entry scatter/gather 
        (S/G) map (This is discussed in the section 
        Scatter/Gather Address Map.)

    o   Programmed I/O read/write address logic

    o   The memory address and control logic

[Figure 3 (Control Chip Block Diagram) is not available in ASCII 
format.]

CPU Interface.  A three-deep queue can hold two outstanding read 
requests, together with the address of a victim block associated 
with one of these read requests. During a DMA write, the Flush 
Address register holds the address of the cache block that the 
CPU must move to memory (and invalidate in the cache). In this 
manner, the system maintains cache coherency during DMA write 
operations.

PCI Address Space Windows.  PCI devices use address space windows 
to access main memory. During discussions with the developers of 
the operating system, we determined that four PCI address space 
windows would be desirable. EISA devices use one window. S/G 
mapping uses a second. The third window directly maps a 
contiguous PCI address region to a contiguous region of main 
memory. The fourth window supports 64-bit PCI addresses. Future 
system designs may provide more than 4 GB of main memory, thus 
requiring the 64-bit address window.

DMA Write Buffering.  The control chip provides a single-entry, 
64-byte DMA write buffer. Once the buffer is full, the data is 
transferred to the DMA buffers in the data slices. The design can 
support 97-MB/s DMA write bandwidth from a 32-bit PCI device.

DMA Read Buffering.  In addition to the two 64-byte buffers 
inside the data slice, the control chip has two 32-byte DMA read 
buffers. These buffers prefetch DMA read data when the initiating 
PCI read command so indicates. This arrangement provides data to 
a 64-bit PCI device at a rate of more than 260 MB/s. 

Scatter/Gather Address Map.  The S/G mapping address table 
translates contiguous PCI addresses to any arbitrary memory 



address on an 8-kilobyte (KB) granularity. For software 
compatibility with other Alpha system designs, the S/G map uses a 
translation lookaside buffer (TLB).[3] The designers enhanced the 
TLB: First, each of the eight TLB entries holds four consecutive 
page table entries (PTEs). This is useful when addressing large 
32-KB contiguous regions on the PCI bus. For instance, the NCR810 
PCI-to-SCSI device requires nearly 24 KB of script space.[4] 
Second, software can lock as many as one half of the TLB entries 
to prevent the hardware-controlled replacement algorithm from 
displacing them. This feature reduces TLB thrashing.

Programmed I/O (PIO) Writes.  The designers focused on improving 
the performance of the functionality that allows a processor to 
copy from memory to I/O space. High-end graphics device drivers 
use this functionality to load the graphics command into the 
device's first-in, first-out (FIFO) buffer. The data slice has 
four buffers, and the control chip contains the corresponding 
four-entry address queue. Four buffers hold enough I/O write 
transactions to mask the latency of the processor's read of 
memory. The control chip provides two additional 32-byte data 
buffers. While one drives data on the PCI bus, the other accepts 
the next 32 bytes of data from the data slices.

Memory Controller.  The memory controller logic in the control 
chip supports as many as eight banks of dynamic random-access 
memory (DRAM). The current memory backplane, however, provides 
for only 4 banks, allowing from 32 MB to 1 GB of memory. The 
memory controller supports a wide range of DRAM sizes and speeds 
across multiple banks in a system. Registers program the DRAM 
timing parameters, the DRAM configuration, and the base address 
and size for each memory bank. The memory timing uses a 15-ns 
granularity and supports SIMM speeds ranging from 80 ns down to 
50 ns.

CACHE DESIGN

The Alpha 21164 microprocessor contains significant on-chip 
caching: an 8-KB virtual instruction cache; an 8-KB data cache; 
and a 96-KB, 3-way, set-associative, write-back, second-level  
mixed instruction and data cache. The system allows for an 
external cache as a plug-in option. This cache is typically 2 MB 
to 4 MB in size, and the block size is 64 bytes. The access time 
for the external cache depends on the CPU frequency and the speed 
variant of the cache. Typically, the first data requires 7 to 8 
CPU cycles; subsequent data items require 1 or 2 fewer cycles. 
The actual value depends on both the minimum propagation time 
through the cache loop and on the CPU cycle time. The external 
cache data bus is 16 bytes wide, providing almost 1 GB/s of 
bandwidth with a 333-MHz CPU and a 5-cycle cache access.

The processor always controls the external cache, but during a 



cache miss, the system and the processor work together to update 
the cache or displace the cache victim. For an external cache 
miss, the system performs four 16-byte loads at 30 ns. Any dirty 
cache block is sent to the victim buffer in the data slices, in 
parallel with the read of memory. Fast page-mode memory writes 
are used to write the victim into memory quickly. (This is 
discussed in the section Memory Addressing Scheme.)

During DMA transactions, the system interrogates the CPU for 
relevant cache data. There is no duplicate tag in the system. DMA 
reads cause main memory to be read in parallel with probes of the 
CPU's caches. If a cache probe hits, the cache data is used for 
the DMA read; otherwise main memory data is used. Each DMA write 
to memory results in a FLUSH command to the CPU. If the block is 
present in any of the caches, then the data is sent to the DMA 
buffers in the data slice and the cache blocks are invalidated. 
This cache data is discarded if the DMA write is sent to a 
complete block. In the case of a DMA write to a partial block, 
the DMA write data is merged with cache data or the memory data 
as appropriate. In this manner, the system maintains cache 
coherency, removing this burden from the software.

MEMORY BANDWIDTH

The memory bandwidth realized by the CPU depends on a number of 
factors. These include the cache block size, the latency of the 
memory system, and the data bandwidth into the CPU.

Cache Block Size 

The Alpha 21164 microprocessor supports either a 32- or 64-byte 
cache block size. The AlphaStation 600 workstation uses the 
64-byte size, which is ideal for many applications, but suffers 
on certain vector-type programs with contiguous memory 
references.[5] An example of a larger block size design is the 
RISC System/6000 Model 590 workstation from International 
Business Machines Corporation.[6] This design supports a 256-byte 
cache block size, allowing it to amortize a long memory latency 
by a large memory fetch. For certain vector programs, the Model 
590 performs well; but in other applications, the large block 
size wastes bandwidth by fetching more data than the CPU 
requires.

The AlphaStation 600 provides a hardware feature to gain the 
benefit of a larger block size when appropriate. The Alpha 21164 
microprocessor can issue a pair of read requests to memory. If 
these two reads reside in the same memory page, the control chip 
treats them as a single 128-byte memory read. In this way, the 
system approximates the benefit of a larger block and achieves 
284 MB/s of memory read bandwidth.



Memory Latency 

The 180-ns memory latency consists of five parts. First, the 
address is transferred from the microprocessor to the control 
chip in 15 ns. The control chip sends the memory row-address 
pulse 15 ns later, and the data is received by the data slices 
105 ns later. The data slices require 15 ns to merge the wider 
memory data onto the narrower SysData bus, and the last 30 ns are 
spent updating the external cache and loading the Alpha 21164 
microprocessor.

Although the 105 ns to access the memory may appear to be 
generous, the designers had to meet the significant challenge of 
implementing the required 1 GB of memory with inexpensive 36-bit 
SIMMs. The JEDEC standard for these SIMMs only specifies the 
pinning and dimensions. It does not specify the etch lengths, 
which can vary by many inches from vendor to vendor. Neither does 
it specify the electrical loading distribution, nor the DRAM type 
or location (1-bit parts have 2 data loads whereas 4-bit parts 
have a single, bidirectional load). With a 1-GB memory system, 
the loading variation between a lightly loaded memory and a fully 
loaded memory is significant. All these factors contributed to 
significant signal-integrity problems with severe signal 
reflections. The memory mother-board etch was carefully placed 
and balanced, and numerous termination schemes were investigated 
to dampen the signal reflections.

Data Bandwidth 

The SysData bus transfers data between the processor, the 
tertiary cache, and the data slices. This 128-bit bus is clocked 
every 30 ns to satisfy the write timing of the external cache and 
to be synchronous with the PCI bus. Typical memory DRAM parts 
cycle at 60 ns, thus requiring a 32-byte-wide memory bus to match 
the bandwidth of the SysData bus. The data slice chips reduce 
each 32-byte-wide memory data transfer to two 16-byte transfers 
on the SysData bus. Consequently, the memory system is logically 
equivalent to a 2-way interleaved memory design.

New memory technologies with superior data bandwidths are 
becoming available. Synchronous DRAMs are an exciting technology, 
but they lack a firm standard and are subject to a significant 
price premium over plain 5-volt DRAM parts. Extended-data-out 
(EDO) DRAMs allow greater burst memory bandwidth, but the latency 
to the first data is not reduced. Consequently, the memory 
bandwidth to the CPU is not significantly improved. The major 
advantage of using EDO parts is their easier memory timing: The 
output data of EDO parts is valid for a longer period than  
standard DRAMs. In addition, an EDO memory can be cycled at 30 
ns, which allows a 128-bit memory width instead of the 256-bit 
width. The designers would have used EDO parts had they been 
available earlier.



MEMORY ADDRESSING SCHEME

The adopted addressing scheme helps improve memory bandwidth. 
Whenever the CPU requests a new block of data, the write-back 
cache may have to displace current data (the victim block) to 
allow space for the incoming data. The writing of the victim 
block to memory should occur quickly, otherwise it will impede 
the CPU's request for new data.

Figure 4 shows the method used to address the external cache and 
memory. The CPU address <31:6> directly accesses the cache: the 
low-order bits <19:6> form the index for a 1-MB cache, and the 
remaining bits <31:20> form the cache tag. The CPU address does 
not directly address memory. Instead, the memory address 
interchanges the index portion of the address field with the tag 
portion. The number of address bits interchanged depends on the 
row and column dimensions of the DRAM used. 

For the sake of discussion, assume a 4-megabit (Mb) DRAM 
configured with 11 row address bits and 11 column address bits. 
Hence, bits <30:20> interchange with bits <16:6>, and the 
remaining bits select the memory bank. This addressing scheme has 
the following effect: a CPU address that is incrementing by units 
of 1 MB now accesses consecutive memory locations. DRAM memory 
provides a fast addressing mode, called page mode, whenever 
accessing consecutive locations. For a 1-MB cache, objects 
separated by a multiple of 1 MB correspond to cache victim 
blocks. Consequently, a CPU read request of memory that involves 
a victim write to memory gains the benefit of page mode and 
proceeds faster than it would with a traditionally addressed 
memory.

Although this address scheme is ideal for CPU memory accesses, it 
creates the converse effect for DMA transactions. It scatters 
consecutive DMA blocks by 1 MB in memory. These locations fall 
outside the DRAM page-mode region, resulting in lower 
performance. The solution is to enlarge the memory blocks; for 
example, start the memory interchange at bit <8> instead of bit 
<6>. This compromise allows 256-byte DMA bursts to run at full 
speed. Slightly fewer victim blocks, however, gain the benefit of 
page mode.

The bit assignment for this address scheme depends on the row and 
column structure of the DRAM part and on the external cache size. 
Power-on software automatically configures the 
address-interchange hardware in the system.

[Figure 4 (Memory Address Scheme) is not available in ASCII 
format.]

DESIGN CONSIDERATIONS  



In this section, we discuss the design choices made for system 
clocking, timing verification, and the application-specific 
integrated circuit (ASIC) design. 

System Clocking 

The chip set is a synchronous design: The system clock is an 
integer multiple of the CPU cycle time. Consequently, the PCI 
clock, the memory clock, and the cache loop are all synchronous 
to each other. The designers avoided an asynchronous design for 
two reasons. It suffers from longer latencies due to the 
synchronizers, and it is more difficult to verify its timing.

Unlike the memory controller, which uses a double-frequency clock 
to provide a finer 15-ns resolution for the memory timing pulses, 
the synchronous design of the chip set uses a single-phase clock. 
This simplified clocking scheme eased the timing verification 
work. Phase-locked-loop (PLL) devices control the clock skew on 
the system board and in the ASICs. The PLL in the ASICs also 
generates the double-frequency clock.

Timing Verification 

The complete system was verified for static timing. A 
signal-integrity tool similar to SPICE was used to analyze all 
the module etch and to feed the delays into the module timing 
verification effort. The final ASIC timing verification used the 
actual ASIC etch delays. This process was so successful that the 
actual hardware was free of any timing-related bug or 
signal-integrity problem.

ASIC Design 

The chip designers chose to implement the gate array using the 
300K technology from LSI Logic Corporation. The control chip uses 
over 100K gates, and each data slice consumes 24K gates. 
Originally, the designers considered the slower 100K technology, 
but it proved unable to satisfy the timing requirements for a 
64-bit-wide PCI bus.

The designers used the VERILOG hardware description language to 
define all the logic within the ASICs. Schematics were not used. 
The SYNOPSIS gate-synthesizer tool generated the gates. The 
designers had to partition the logic into small 3,000 to 8,000 
gate segments to allow SYNOPSIS to complete within 12 to 15 hours 
on a DECstation 5000 workstation. Currently, the same synthesis 
requires 1 hour on the AlphaStation 600 5/260. The designers 
developed a custom program that helped balance the timing 
constraints across these small gate segments. This allowed the 
SYNOPSIS tool to focus its attention on the segments with the 
greatest potential for improvement.



PERFORMANCE

Table 1 gives the bandwidths of the workstation for the 32-bit 
and 64-bit PCI options. A structural simulation model verified 
this data, using a 180-ns memory latency and a 30-ns system 
clock. The 285-MB/s read bandwidth of the CPU memory is 
impressive considering that the memory system is 1 GB. 
Eventually, the memory size will reach 4 GB when 64-Mb memory 
chips become available. 

The I/O write bandwidth is important for certain 3D graphics 
options that rely on PIO to fill the command queue. Current 
high-end graphics devices require approximately 80 MB/s to 100 
MB/s. The 213 MB/s of I/O write bandwidth on the 64-bit PCI can 
support a double-headed 3D graphics configuration without 
saturating the PCI bus. Other 3D graphics options use large DMA 
reads to fill their command queue. This approach offers 
additional bandwidth at 263 MB/s. The system did not optimize DMA 
writes to the same extent as DMA reads. Most options are amply 
satisfied with 100 MB/s of bandwidth.

Table 1 Bandwidth Data

Transaction                     32-bit          64-bit 
Type                            PCI             PCI
------------------------------------------------------------
CPU memory read:
    64 bytes                    284             284 
 
I/O write: 
    Contiguous 32 bytes         119             213 
    Random 4 bytes               44              44

I/O read: 
         4 bytes                 12              12 
        32 bytes                 56              56

DMA read: 
        64 bytes                 79             112 
        8 KB                    132             263

DMA write:
        64 bytes                 97             102

Table 2 gives the performance for several benchmarks. The data is 
for a system with a 300-MHz processor and a 4-MB cache built out 
of 12-ns SRAM parts. The SPECmark data is preliminary and clearly 
world-class. The LINPACK data is for double-precision operands. 
Even greater performance is possible with faster cache options 
(for instance, a cache using 8-ns parts) and faster speed 



variants of the Alpha 21164 microprocessor.

Table 2 Benchmark Performance

Benchmark                       Performance
----------------------------------------------
SPECint92                            331
SPECfp92                             503

LINPACK 100 X 100                    144
LINPACK 1000 X 1000                  380

FUNCTIONAL VERIFICATION

The functional verification is an ongoing effort. Three factors 
contribute to the need for greater, more efficient verification. 
First, the design complexity of each new project increases with 
the quest for more performance. Next, the quality expectations 
are rising -- the prototype hardware must boot an operating 
system with no hardware problems. Finally, time to market is 
decreasing, providing less time for functional verification.

A number of projects at Digital have successfully used the SEGUE 
high-level language for functional verification.[3,7] SEGUE 
allows simple handling of randomness and percentage weightings. 
As an example, a code sequence may express that 30 percent of the 
DMA tests should target the scatter/gather TLB, and that the DMA 
length should be selected at random from a specified range. Each 
evocation of SEGUE generates a test sequence with different 
random variations. These test sequences are run across many 
workstations to achieve a high throughput. The project used 20 
workstations for 12 months.

The test suite focused on the ASIC verification in the context of 
the complete system. It was not a goal to verify the Alpha 21164 
microprocessor; neither was the EISA logic verified (this logic 
was copied from other projects). The test environment used the 
VERILOG simulator and included the Alpha 21164 behavioral model, 
a PCI transactor (a bus functional model), and a memory and cache 
model. The SEGUE code generated C-language test programs for 
CPU-to-memory and CPU-to-I/O transactions, as well as DMA scripts 
for the PCI transactor.

The goal of verification went beyond ensuring that the prototype 
hardware functioned correctly. The major objective was to ensure 
that the hardware is reliable many years hence, when new, as yet 
undeveloped, PCI options populate the system. Today, the PCI bus 
uses only a small number of expansion option cards. It is quite 
probable that a perfunctory verification of the PCI logic would 
result in a working system at the time of hardware power-on and 
for many months thereafter. It is only as more option cards 
become available that the likelihood of system failure grows. 



Consequently, the verification team developed a detailed PCI 
transactor and subjected the PCI interface in the control chip to 
heavy stressors. The complexity of the PCI transactor far exceeds 
that of the PCI interface logic within the ASIC. The reason is 
that the ASIC design implements only the subset of the PCI  
architecture appropriate to its design. The PCI transactor, 
however, has to emulate any possible PCI device and thus must 
implement all possible cases. Furthermore, it must model poorly 
designed PCI option cards (the word "should" is common in the PCI 
specification).

The verification experience included the following:

    o   Directed tests.  Specific, directed tests are needed to 
        supplement pseudorandom testing. For example, a certain 
        intricate sequence of events is best verified with a 
        specific test, rather than relying on the random process 
        to generate the sequence by chance.

    o   Staff hours.  In prior projects, the hardware team 
        exceeded the verification team in size. Over the years, 
        the importance of verification has grown. On this 
        project, twice as much time was spent on the verification 
        effort as on the hardware coding.

    o   Degree of randomness.  Pure randomness is not always 
        desirable. For instance, an interesting test can be 
        conducted when a DMA write and a CPU read target the same 
        block in memory (although, for coherency reasons, not the 
        same data). Random addresses are unlikely to create this 
        interaction; instead careful address selection is 
        necessary.

    o   Error tests.  The pseudorandom test process added a 
        different error condition, such as a PCI addressing 
        error, within each test. The hardware logic, upon 
        detecting the error, would vector by sending an interrupt 
        to the error-handling code. The handler would check if 
        the hardware had captured the correct error status and, 
        if it had, would resume the execution of the test 
        program. This strategy uncovered bugs when the hardware 
        continued functioning after an error condition, only to 
        fail many cycles later.

    o   Hardware simulation accelerator.  The project team did 
        not use a hardware simulation accelerator for a number of 
        reasons. In the early phase of verification, bugs are so 
        frequent that there is no value in finding more bugs. The 
        limiting resource is the isolation and fixing of the 
        bugs. Second, porting the code onto the hardware 
        simulator uses resources that are better spent improving 
        the test suite: running poor tests faster is of no value. 
        Finally, the hardware-based verification technique offers 
        far greater performance.



    o   Bug curve.  The project team maintained a bug curve. The 
        first-pass ASIC was released when the bug curve was 
        falling but was still above zero. The tests were 
        structured to test the important functionality first. 
        This allowed verification to continue while the operating 
        system developers debugged their code on the prototype. 
        To help this strategy, any performance-enhancement logic 
        in the ASICs could be disabled in case an error was 
        discovered in that logic. Experience on prior projects 
        had shown that such logic has a predilection toward bugs.

HARDWARE-BASED VERIFICATION

The hardware-based verification was developed to achieve a 
significant, five-orders-of-magnitude improvement in test 
throughput. The CPU performs pseudorandom memory and I/O-space 
transactions, and a number of PCI graphics options emulate 
generic PCI devices. The hardware-based verification has so far 
uncovered three bugs. To further improve this technique, a 
hardware PCI demon is under development. This device has the 
capability to mimic any PCI device.

The random nature of the test suite means that the bug curve has 
a long tail: The probability of finding the next bug decreases as 
each bug is discovered. For example, an earlier project team 
discovered the last bug after six months but needed only one week 
to find the penultimate bug. Greater test throughput helps 
uncover the final bug(s) sooner. Our project team achieved 
greater throughput by migrating the test strategy onto the actual 
hardware.

A self-checking, pseudorandom, test-generating program runs on 
the hardware, testing the memory, the cache, and the PCI. On 
detecting a mismatch, the software triggers a digital analyzer 
connected to visibility points on the hardware. Currently, a 
number of PCI graphics cards are emulating different DMA devices. 
Eventually, a custom PCI test device, the PCI demon, will replace 
the graphics cards and provide greater flexibility and 
functionality (especially with regard to error cases).

The software-based verification, running across 20 workstations, 
averaged approximately 100 DMA transactions per minute (with 
concurrent memory and PIO activity). The hardware-based 
verification runs 60 million comparable DMA transactions per 
minute per workstation. This 5-orders-of-magnitude improvement 
suggests that all the tests performed in the past 12 months of 
software-based verification can be completed during the 
hardware-based debugging in 5 minutes.

A secondary, but very useful, advantage of hardware-based 
testing is the ability to stress the chips electrically. For 
instance, by selecting a data pattern of 1's and 0's for the DMA, 



memory, and PIO tests, verification engineers can severely test 
the capability of the chips to switch simultaneously.

Hardware Test Strategy

The SEGUE software proved not to be useful for the hardware-based 
verification effort. Instead new software was written in the C 
language for the following reasons:

    o   Verification must have full control of the hardware and 
        thus cannot run on top of an operating system. 
        Consequently, SEGUE and the operating system 
        functionality are not available.

    o   Unlike the software environment, visibility into the 
        logic signals is restricted in the hardware environment. 
        The test software has to be written to make debugging 
        simpler.

    o   One possible strategy is to download the SEGUE tests onto 
        the hardware and thus treat the hardware as a simulation 
        accelerator. However, the resultant performance 
        improvement is small: The SEGUE code takes 2 minutes to 
        generate a 1-hour software-simulation run. These tests 
        run across 20 workstations with a resultant throughput of 
        1 test every 3 minutes. Assuming the same test executed 
        in zero time on the hardware, the total test time would 
        equal 1 test every 2 minutes -- a minor improvement.

The hardware-based verification software relies on the following 
rationale: The hardware is almost totally bug free, and any 
remaining bugs are most likely to be due to a rare interaction of 
events. Indeed, one of the bugs discovered was a special-case DMA 
prefetch coinciding with a memory refresh. Consequently, no test 
is likely to detect more than one bug. For instance, if a DMA 
operation suffers an error, then it is unlikely that a 
subsequent, identical DMA operation will suffer an error. The 
second DMA will experience a different set of interactions inside 
the chip set.

The adopted test environment has two graphics cards, each 
performing identical DMA operations to two different regions of 
memory. Because of the serial nature of the PCI bus, however, 
these cards will perform the DMA operations at different times. 
Furthermore, other traffic on the PCI bus (for instance, the CPU 
will be executing random PIO) will further randomize the cards' 
behavior. While the DMA transactions run, self-checking, random 
CPU traffic to memory and I/O will also run. These events provide 
the random mix of interacting instructions. At the completion of 
the test, a miscomparsion of the two DMA write regions indicates 
an error.



Graphics Demon

A number of PCI option cards were investigated as potential PCI 
demon cards. The requirements for a PCI demon card are twofold: 
it must be able to perform DMA of various lengths, and it must 
have memory for the storage of DMA and PIO data. The DEC ZLXp_E1 
graphics card was selected because it offers the following 
advantages:

    o   Independent DMA.  Most PCI options start a DMA operation 
        instantly after the CPU has written to a specific 
        register in the option. This is undesirable because it 
        makes it impossible to emulate options that start DMA 
        operations autonomously (e.g., a network card). To break 
        this coupling, the test program should first make the 
        graphics card paint a portion of the screen. While the 
        graphics device is busy, the graphics command FIFO buffer 
        is filled with the DMA commands. The graphics device will 
        not start the DMA until it has finished painting. 
        Furthermore, the delay is programmable by varying the 
        number of pixels painted.

    o   Programmable DMA.  The graphics card allows the DMA to be  
        any size, whereas most PCI options are constrained to a 
        fixed length. Moreover, it is possible to arrange for PCI 
        disconnects on a DMA read. The graphics card modifies 
        incoming data with the contents of the frame buffer 
        (e.g., frame buffer = frame buffer XOR data). This 
        feature throttles the internal bandwidth of the graphics 
        card, which disconnects it from the PCI. 

    o   Frame buffer.  The graphics frame buffer is the target of 
        the DMA and PIO operations. A useful software debugging 
        feature was to observe the frame buffer while running the 
        tests.

PCI Demon

The PCI demon is designed to mimic any possible PCI device. 
Software has total control of the behavior of the device, 
including the assertion of error conditions (e.g., parity errors 
on any specified data word). The architecture of the PCI demon is 
very simple so that the debugging of the PCI demon is 
straightforward. (The objective is to find bugs in the chip set 
and not in the PCI demon.) Consequently, the complexity in using 
the PCI demon is completely in the software.

The ideal architecture of a PCI demon is a large memory whose 
output drives the PCI data and control signals directly; the 
software programs the desired PCI operation by loading the 
appropriate pattern into this memory. In reality, the 
architecture of the PCI demon has to diverge from this ideal 
model for at least two reasons. First, the PCI demon has to be 



able to emulate the fastest possible PCI device, and this forces 
the use of an ASIC. However, ASICs have limited memory capacity. 
It is desirable to store the scripts for many thousands of DMAs 
in this memory. The scripts are approximately 100-bits wide 
(64-bit PCI data and control) and require several megabytes of 
memory. This memory requirement forces the design to use external 
memory. Second, the PCI architecture has a few handshake control 
signals that require the use of a fast state machine.

The PCI demon has the functionality to act as a histogram unit (a 
PCI event counter). Internal counters measure timing information 
such as DMA latency and the frequency of specified PCI 
transactions. The PCI demon observes these states by snooping the 
PCI bus.

SUMMARY

The AlphaStation 600 5-series workstation offers high compute 
performance, together with substantial I/O subsystem performance. 
The project team designed a low-cost, 1-GB memory system with a 
180-ns memory latency. Timing verification and placement of the 
plug-in, external cache resulted in a workstation with 
considerable flexibility in memory expansion, cache variants, and 
I/O option slots.

The most time-consuming portion of the project was the functional 
verification. To date, different test programs have run 
concurrently across 20 high-performance workstations, day and 
night, for over 12 months. The release of the prototype chip set 
occurred after 5 months of verification; this chip set 
successfully booted the operating system. The remaining 7 months 
of verification were focused on the lower priority functionality 
(e.g., error cases and slow memory configurations).

The hardware-based verification approach proved its value by 
uncovering three bugs. The most significant bug involved the 
interaction of a number of events, including an optimized, 
prefetching DMA read and a memory refresh. The verification 
process helped create a very high quality product.
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