R, Rcpp and Parallel Computing

Notes from our Rcpp Experience

Dirk Eddelbuettel and JJ Allaire

Jan 26-27, 2015
Workshop for Distributed Computing in R
HP Research, Palo Alto, CA
Outline

1. Intro
2. R
3. Rcpp
4. RcppParallel
The whole “let’s parallelize” thing is a huge waste of everybody’s time. There’s this huge body of “knowledge” that parallel is somehow more efficient, and that whole huge body is pure and utter garbage. Big caches are efficient. Parallel stupid small cores without caches are horrible unless you have a very specific load that is hugely regular (ie graphics). […] Give it up. The whole “parallel computing is the future” is a bunch of crock.

Linus Torvalds, Dec 2014
Another View on Big Data

Imagine a gsub("DBMs", ", ", tweet) to complement further...

Brian L. Troutwine
@bltroutwine

Most ‘big data’ problems are solved with:

* GNU parallel
* a single beefy machine
* cron
* some C++
* a RDBMs

Tell your friends.

7:48 PM - 26 Dec 2014
Outline

1. Intro
2. R
3. Rcpp
4. RcppParallel
Things R does well:

- Package `snow` by Tierney et al. a trailblazer
- Package `Rmpi` by Yu equally important
- `multicore` / `snow` / `parallel` even work on Windows
- Hundreds of applications
- *It just works* for data-parallel tasks
Outline

1 Intro
2 R
3 Rcpp
4 RcppParallel
In the fairly early days of Rcpp, we also put out RInside as a simple C++ class wrapper around the R-embedding API.

It got one clever patch taking this (ie: R wrapped in C++ with its own `main()` function) and encapsulating it within MPI.

HP Vertica also uses Rcpp and RInside in DistributedR.
Rcpp is now easy to deploy; Rcpp Attributes played a key role:

```cpp
#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
double piSugar(const int N) {
    NumericVector x = runif(N);
    NumericVector y = runif(N);
    NumericVector d = sqrt(x*x + y*y);
    return 4.0 * sum(d < 1.0) / N;
}
```
Rcpp: Extensions

Rcpp Attributes also support “plugins”

OpenMP is easy to use and widely supported (on suitable OS / compiler combinations).

So we added support via a plugin. Use is still not as wide-spread.

Errors have commonality: calling back into R.
using namespace boost;

void task()
{
 lock_guard<boost::mutex> lock(mutex);
 // etc...
}

threadpool::pool tp(thread::hardware_concurrency());
for (int i=0; i<slices; i++)
 tp.schedule(&task);
Goals:

- Encapsulate threading and locking
- Provide high level constructs for common parallel tasks
- High performance: locality, work stealing, etc.
- Safe access to R data structures on multiple threads
Parallel Programming Alternatives

<table>
<thead>
<tr>
<th>Feature</th>
<th>TBB</th>
<th>OMP</th>
<th>RAW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task level parallelism</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Data decomposition support</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non loop parallel patterns</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Generic parallel patterns</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nested parallelism support</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Built in load balancing</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affinity support</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Static scheduling</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concurrent data structures</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Scalable memory allocator</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
</tbody>
</table>
Raw threads shift too much burden for parallelization onto the developer (error prone and not performant).

OpenMP is excellent for parallelizing existing loops where the iterations are independent (R already has some support for OpenMP).

TBB fares better when there is more potential interaction between threads (e.g. more complex loops, simulations, or where concurrent containers are required).

RcppParallel: Enable use of TBB with R to complement existing OpenMP stack.
Win32 Platform Complications

- TBB supports mingw on Win32 however we haven’t (yet) sorted out how to build it with Rtools
- As a result we use TinyThread on Win32
- This requires that we create a layer to abstract over TBB and TinyThread (thus limiting the expressiveness of code that wants to be portable to Windows).
- Developers are still free to use all of TBB if they are content targeting only Linux and OSX
- Would love to see TBB working on Win32 (pull requests welcome!)
R is single-threaded and includes this warning in *Writing R Extensions* when discussing the use of OpenMP:

Calling any of the R API from threaded code is ‘for experts only’: they will need to read the source code to determine if it is thread-safe. In particular, code which makes use of the stack-checking mechanism must not be called from threaded code.

However we don’t really want to force Rcpp users to resort to reading the Rcpp and R source code to assess thread safety issues.
RcppParallel Threadsafe Accessors

Since R vectors and matrices are just raw contiguous arrays it’s easy to create threadsafe C++ wrappers for them:

- `RVector<T>` is a very thin wrapper over a C array.
- `RMatrix<T>` is the same but also provides `Row<T>` and `Column<T>` accessors/iterators.

The implementations of these classes are extremely lightweight and never call into Rcpp or the R API (so are always threadsafe).
Two high-level operations are provided (with TBB and TinyThread implementations of each):

- `parallelFor` – Convert the work of a standard serial “for” loop into a parallel one
- `parallelReduce` – Used for accumulating aggregate or other values.

Not surprisingly the TBB versions of these operations perform \(\sim 50\% \) better than the “naive” parallel implementation provided by TinyThread.
Basic Mechanics: Create a Worker

Create a Worker class with operator() that RcppParallel uses to operate on discrete slices of the input data on different threads:

```cpp
class MyWorker : public RcppParallel::Worker {
    void operator() (size_t begin, size_t end) {
        // do some work from begin to end
        // within the input data
    }
}
```
Basic Mechanics: Call the Worker

Worker would typically take input and output data in it’s constructor then save them as members (for reading/writing within operator()):

```c++
NumericMatrix matrixSqrt(NumericMatrix x) {
    NumericMatrix output(x.nrow(), x.ncol());
    SquareRootWorker worker(x, output);
    parallelFor(0, x.length(), worker);
    return output;
}
```
For parallelReduce you need to specify how data is to be combined. Typically you save data in a member within operator() then fuse it with another Worker instance in the join function.

```cpp
class SumWorker : public RcppParallel::Worker
{
    // join my value with that of another SumWorker
    void join(const SumWorker& rhs) {
        value += rhs.value;
    }
};
```
What does all of this buy us?

- Developers just write pieces of code that are called at the correct time by an intelligent parallel supervisor. In most cases no locking or explicit thread management required!
- Supervisor does some intelligent optimization around:
 - Grain size (which affects locality of reference and therefore cache hit rates). Note that grain size can also be tuned directly per-application.
 - Work stealing (detecting idle threads and pushing work to them)
- In the case of TBB, high performance concurrent containers are available if necessary
Examples

- All available on the Rcpp Gallery
 http://gallery.rcpp.org
- Tested with 4 cores on a 2.6GHz Haswell MacBook Pro
- Note that benchmarks will be 30-50% slower on Windows because we aren’t using the more sophisticated scheduling of TBB
Example: Transforming a Matrix in Parallel

http://gallery.rcpp.org/articles/parallel-matrix-transform

```cpp
void operator()(size_t begin, size_t end) {
    std::transform(input.begin() + begin,
                    input.begin() + end,
                    output.begin() + begin,
                    ::sqrt);
}
```

test	replications	elapsed	relative
2 parallelMatrixSqrt(m) | 100 | 0.294 | 1.000
1 matrixSqrt(m) | 100 | 0.755 | 2.568
Example: Summing a Vector in Parallel

http://gallery.rcpp.org/articles/parallel-vector-sum

```c++
void operator()(size_t begin, size_t end) {
  value += std::accumulate(input.begin() + begin,
                            input.begin() + end,
                            0.0);
}

void join(const Sum& rhs) {
  value += rhs.value;
}
```

test replications elapsed relative

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2 parallelVectorSum(v)</td>
<td>100</td>
<td>0.182</td>
<td>1.000</td>
</tr>
<tr>
<td>1 vectorSum(v)</td>
<td>100</td>
<td>0.857</td>
<td>4.709</td>
</tr>
</tbody>
</table>
Example: Parallel Distance Matrix Calculation

http://gallery.rcpp.org/articles/parallel-distance-matrix

<table>
<thead>
<tr>
<th>test</th>
<th>reps</th>
<th>elapsed</th>
<th>relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>rcpp_parallel_distance(m)</td>
<td>3</td>
<td>0.110</td>
</tr>
<tr>
<td>2</td>
<td>rcpp_distance(m)</td>
<td>3</td>
<td>0.618</td>
</tr>
<tr>
<td>1</td>
<td>distance(m)</td>
<td>3</td>
<td>35.560</td>
</tr>
</tbody>
</table>

- Rcpp + RcppParallel = 323x over R implementation!
- Unbalanced workload benefits from work stealing
The Rest of TBB

- Advanced algorithms: `parallel_scan`, `parallel_while`, `parallel_do`, `parallel_pipeline`, `parallel_sort`
- Containers: `concurrent_queue`, `concurrent_priority_queue`, `concurrent_vector`, `concurrent_hash_map`
- Mutual exclusion: `mutex`, `spin_mutex`, `queuing_mutex`, `spin_rwlock_mutex`, `queuing_rwlock_mutex`, `recursive_mutex`
- Atomic operations: `fetch_and_add`, `fetch_and_increment`, `fetch_and_decrement`, `compare_and_swap`, `fetch_and_store`
- Timing: portable fine grained global time stamp
- Task Scheduler: direct access to control the creation and activation of tasks
Open Issues

- Additional (portable to Win32 via TinyThread) wrappers for other TBB constructs?
- Alternatively, sort out Rtools configuration issues required to get TBB working on Windows.
- Education: Parallel Programming is hard.
- Simple `parallelFor` and `parallelReduce` are reasonably easy to grasp, but more advanced idioms aren’t trivial to learn and use (but for some applications have lots of upside so are worth the effort).