D

Six Degree of Freedom Control with
a Two-Dimensional Input Device:
Intuitive Controls and Simple

Implementations

Mark A. Livingston.2, Arthur Gregory?, Bruce Culbertson?
Computer Systems Laboratory

HP Laboratories Palo Alto

HPL-1999-115

September, 1999

view control, A variety of techniques have been proposed to manipulate
mouse, user objects in three dimensions using only a two-dimensional input
interface, device, such as a standard mouse. Some of these methods
interactive lacked full six degree of freedom (DOF) control, instead
graphics, 3D manipulating only the two DOF orientation of the object.
graphics, Others provide six DOF control at the cost of complex user
rotation, operations and complex implementations. We extend one
orientation, popular manipulation paradigm, the ARCBALL controller, to a
translation, full six DOF controller. We provide two implementations of six
navigation DOF control, with the new implementations of operations made

HEWLETT
PACKARD

simple by taking advantage of graphics library operations.

Internal Accession Date Only

! Hewlett-Packard Laboratories

2 Department of Computer Science, University of North Carolina at Chapel Hill
o) Copyright Hewlett-Packard Company 1999

Six Degree of Freedom Control with a Two-Dimensional Input Device:
Intuitive Controls and Simple Implementations

Mark A. Livingston'2, Arthur Gregory?, and Bruce Culbertson'

!Hewlett-Packard Laboratories
2Department of Computer Science, University of North Carolina at Chapel Hill

Abstract

A variety of techniques have been proposed to manipulate
objects in three dimensions using only a two-dimensional in-
put device, such as a standard mouse. Some of these meth-
ods lacked full six degree of freedom (DOF) control, instead
manipulating only the two DOF orientation of the object.
Others provide six DOF control at the cost of complex user
operations and complex implementations. We extend one
popular manipulation paradigm, the ARCBALL controller,
to a full six DOF controller. We provide two implemen-
tations of six DOF control, with the new implementations
of operations made simple by taking advantage of graphics
library operations.

Keywords: view control, mouse, user interface, interac-
tive graphics, 3D graphics, rotation, orientation, translation,
navigation

1 Introduction

Manipulation of objects in ®* has six degrees of freedom
(DOFs), three for translation and three for rotation. Equiv-
alent to moving the entire world is manipulation of the cam-
era through the environment. Such control would allow one
to generate any desired view of a 3D scene. Standard graph-
ics libraries such as OpenGL [6] include a variety of routines
for specifying the pose (position and orientation) of a cam-
era viewing the environment, but leave the control of that
pose to the application program.

A major factor in the difficulty of controlling the cam-
era pose with six DOFs is that the standard user interface
tool—the mouse—has only two DOFs. This clearly presents
a challenge to the interface designer, as a 3D input device has
definite advantages over a 2D device in designing a naviga-
tion interface [2]. However, until 3D input devices become
as ubiquitous as 2D devices, we must continue to design
navigation interfaces that take advantage of only those fea-
tures present in a typical 2D input device. One can thus
understand the considerable difficulty the application pro-
grammer has in providing a suitable user interface. This is
compounded by the fact that the programmers tend to be
experienced with a variety of input devices and do not al-
ways consider the aesthetic properties of an interface. These
issues, however, are beyond the scope of this paper.

In this paper, we present two user interfaces that provide
six DOF navigation. One adds translation to a previous
interface, another implements the interface anew. Both of
these interfaces have the advantage that only the current
screen position of the mouse relative to the previous posi-
tion affects the current view; the path through which the
user guides the mouse during navigation does not affect the
view. We feel this is an important aspect of the user in-
terface; this is why we began by building from an existing

interface with this property. A secondary goal of our imple-
mentation for both the extension to the existing technique
and our new technique was simplicity of implementation.
This helps further the goals of efficiency and natural feel to
the interface.

We begin by summarizing the architecture of previous in-
terfaces in Section 2. These include orientation-only con-
trollers and a separate implementation of six DOF control.
In Section 3, we introduce similar translation operations as
the previous six DOF implementation to the architecture of
a popular three DOF controller. This yields a system with
the aesthetic advantages of the orientation controller. Sec-
tion 4 presents an alternative, simple implementation that
only slightly alters the resulting interface. The interface
methods are summarized in Section 5.

2 Previous Work

2.1 Orientation Controllers

One of the most popular systems of controlling the relative
orientation of the environment with respect to the camera
is ARCBALL [4]. ARCBALL allows the user to directly
specify an arc on a sphere which is rigidly attached to the
environment. The arc is defined by two vectors which origi-
nate at the center of the sphere and terminate at the point
on the surface of the sphere where the rotation operation was
begun and is currently. In the practical sense, this means the
mouse position when the rotation was begun (initiated by a
button press) and the current mouse position, both trans-
formed into world coordinates from the camera image plane
and then projected onto the surface of the sphere. This arc
naturally defines a rotation of the ARCBALL by rotating
around the normal to the plane which contains the two vec-
tors, by an angle that is proportional to the length of the
arc.

Another orientation controller is the virtual trackball [3].
This interface also transforms mouse motion on the screen to
rotations of a sphere affixed to the environment, albeit with
different mappings to axes of rotation. The virtual trackball,
however, was regarded as difficult to use because the rotation
that occurs depends on the path of the mouse across the
screen, not solely on the final mouse position. Further, it
was difficult to return the camera to its initial setting if
both input DOF were active. (A constrained version which
utilized only one axis at a time would have been easier, but
necessarily less powerful.)

The ARCBALL avoided this problem by using the arcs to
map mouse position on the screen to rotations. If the mouse
were returned to its initial position, the view would be re-
turned to its initial state. This is a useful property for a user
interface for camera manipulation. However, we found the
ARCBALL interface made it difficult to control the direction

that was vertical on the screen—i.e. which way was “up.”
We felt the lack of control of that degree of freedom made it
difficult to navigate through our environments in which the
world inherently defined a vertical direction.

2.2 Six DOF Control

Translation operations complement orientation operations
to provide six DOF control. This can lead to a need for
multiple user interface controls (e.g. buttons or keystrokes)
just for navigation. Interpreting the mouse motion in ges-
tural form can reduce the required number of controls. One
of the design goals of the UniCam interface [7] was to re-
quire the use of only one button for navigation control. This
leads to an interface in which mouse motion not only de-
termines the amount of motion within the DOFs, but also
disambiguates between which type of motion the user de-
sires. The operations for orientation are similar to those
for the orientation-only controllers described above. Opera-
tions for translation consist of translation along the view ray,
translation parallel to the camera image plane, and apparent
translation by zooming the image'.

Other applications, for example many VRML browsers,
use widgets on screen to map user actions to navigation op-
erations. These tend to be camera-centric operations. We
find these interfaces lacking in control of the sense of “up” in
the world as the user navigates. Other systems map mouse
motion, velocity, and acceleration to different navigation op-
erations. These are similar to the gestural controls in that
they require interpretation of how the mouse moves. We feel
these interfaces place too many requirements on the user for
accurate navigation.

3 Extending ARCBALL to Six DOF

We opt to use the ARCBALL interface as our basis for a
navigation system. The most obvious limitation of the ARC-
BALL interface, as noted in the original description, is that
it lacks a translation control. One cannot move closer to an
object to examine it in detail. We introduce three opera-
tions to the architecture: translation along a specified view
ray (an operation also introduced in the gestural interface),
zooming around a specified 3D point (also introduced in the
gestural interface), and recentering the sphere.

We do not share a need for reserving only one button with
the gestural method, and thus prefer to limit the need for
precise mouse gesture control on the part of the user. For
our new operations, we do not adopt the screen subdivision
present in both UniCam and in ARCBALL (and thus our
orientation controls). Thus translation once the camera is
already near a large, complex object need not require “back-
ing out” to recenter on a nearby point.

3.1 Zoom or Apparent Zoom

Adding zooming to the ARCBALL interface is quite simple.
The original implementation [5] simply applied a rotation
to the current orientation, which maintains the distance at

IThe orientation-only controllers can also be thought of as
translating the camera while maintaining a fixed point of ob-
servation, sometimes known as orbiting the object. These two
operations are indistinguishable from the screen if the entire en-
vironment is affected by the operation, and thus we refer to or-
biting operations as changes in the orientation, regardless of the
implementation.

which the initial view was from the center of rotation. How-
ever, we can change the distance or apparent distance as
follows. When the mouse button is pressed, it denotes a ray
through the camera image plane to the object. We intersect
this ray with the object to get a direction in world space.
We can provide an apparent zoom effect under either ortho-
graphic or perspective projection. For orthographic projec-
tion, we simply scale the borders of the projection volume
(Figure 1). For perspective projection, we scale the objects
in the world (but not the camera position) around the in-
tersection point® (Figure 2). These operations are easily
performed with the view frustum commands provided in the
graphics library.

constant zoomFactor = 0.1
zoomValue = 1
scaleValue = 1

ZoomIn()
zoomValue *= 1 4+ zoomFactor

ZoomOut()
zoomValue /=1 + zoomFactor

...in display loop...

xBorder = (width / height) / zoomValue

yBorder = 1.0 / zoomValue

glOrtho(-xBorder, xBorder, -yBorder, yBorder,
zNear, zFar * scaleVal)

Figure 1: Implementation of an apparent zoom of the user’s
view of the environment.

Object/Scene

o —_| D,

irect
ecnor] of motron

Mouysg Ray | Camera

Old Navigation
Sphere

New Navigation Sphere

Figure 2: Extension of ARCBALL to include translation by
allowing the user to zoom in along a line of sight determined
by the mouse. In this scene using perspective projection, we
can provide apparent zoom by scaling the world around the
intersection point. Alternatively, we can translate the cam-
era along the line of sight. In our technique, we accompany
this with a corresponding translation of the center of the
ARCBALL sphere, which will influence future navigation
operations in a way that the scaling implementation does
not. This concept can be applied to orthographic projection
as well, as the code in Figures 1 and 4 show.

2This point is known as the hit point in [7].

3.2 Translation With or Without Recentering

Alternatively, we can translate the camera along the ray de-
fined by the mouse position. This is identical to the op-
eration provided by [7], although we do not adopt their
speed control in our implementation. Under orthographic
projection, the view generated by this translation will be
the same as that generated while only the zoom operation
is performed, but we perform an extra operation that makes
this operation different. We also change the position of the
center of the ARCBALL sphere. The difference will be seen
when the user rotates the model. If the user has zoomed in,
part of the model may now be behind the camera. A sub-
sequent rotation will then reveal previously hidden portions
of the model. This can be a powerful tool for examining the
“Iinterior” regions of concave objects (Figure 3).

Under perspective projection, we perform the same two
operations: translate the camera position along the speci-
fied ray and translate the center of the ARCBALL sphere.
This changes not only the apparent size similarly to the way
scaling the objects in the world does, but also influences fu-
ture rotation operations by changing the center of rotation.

These operations allow the user to navigate around the
model by “pulling” the camera towards a point on the model
(defined by a ray, which is in turn defined by a mouse click),
and/or “pushing” the center of rotation towards that same
point. (These terms are not meant to be opposites, since
they do not affect the same set of parameters. We mean
only to convey the sense of motion relative to the camera’s
point of view.)

The effect of zooming into the interesting point on the
model under the mouse cursor is further achieved by scaling
it before drawing. With the finite z resolution available in
the standard graphics frame buffer, we must also attenuate
the farplane distance in the orthographic projection matrix
(Figure 4). This is virtually identical in spirit to the “dol-
lying” and “orbiting about a specific point” provided by [7].
Note that the scaling variable used to control the far plane,
as shown in Figure 1, is updated in this operation.

Movelnit()
camRay = ImagePointToWorldRay(z, y,
world-to-camera-matriz)
newCenter = Intersect(camRay, model)

Moveln()
Movelnit()
centerDispl = newCenter — center
center = center + centerDispl * zoomFactor
scaleValue *= 1 + zoomFactor

MoveOut()
Movelnit()
scaleValue /= 1 + zoomFactor
if(scaleValue < 1)
scaleValue = 1

Figure 4: Implementation of a zoom and recentering of the
user’s view of the environment.

We have found this to be a useful navigation interface
which carries the primary advantages of the ARCBALL in-
terface: intuitive control for the user and independence of
the operations from the path the mouse takes on the screen.
We prefer the multiple buttons to engage the various opera-
tions rather than rely on the user to perform gestures on the

Up vector
Object/Scene |
Ragiyg
Look point
Azimuth
Elevation
Eyepoint
Navigation Sphere
New Eyepoint

N

Figure 5: Our new six DOF navigation method maps user
interface controls to the azimuth, elevation, and radius of
the eye point from the look point, the look point position,
and the direction of the up vector as seen by the camera.

screen, which, however small they may be, seems to retreat
from the ARCBALL'’s goal of path independence.

Our implementation takes advantage of hardware imple-
mentation of the pick function in the OpenGL graphics li-
brary utilities [6]. The application can query the graphics
engine for which polygons currently project to a given screen
point. Hence we only need to compute the intersection point
with a single primitive. Although this works well for mod-
els that are decomposed into polygons before drawing, some
data sets might not be displayed in this fashion. Hence it
would be nice to eliminate this necessity.

4 A Simpler Implementation

While the original ARCBALL with the extension to it de-
scribed in Section 3 or the gestural interface discussed in
Section 2 both provide intuitive methods for controlling the
view, they have added significant complexity to the imple-
mentation. It is time to examine the geometry of the op-
erations from a new perspective, in order to simplify the
implementation of these basic operations.

The geometry of the ARCBALL interface can best be
understood by examining the “look-at” transformation [1].
ARCBALL offered the user control of three DOF. These
were understood as the orientation of the environment (or,
more precisely, the orientation of a sphere rigidly affixed to
the environment), but could equivalently be described as the
direction of the camera (with respect to a fixed point of at-
tention, or look point, and a fixed distance from that point,
for two DOF') and the world direction that is vertical on the
screen. The extension has given us control of the look point
(three DOF that partly overlap with camera position, for
two new DOF') and the distance to that point (Figure 5).

We can thus remap the controls of the ARCBALL to the
elements that we use to specify the standard look-at trans-
formation: the camera position, the look point, and a ref-
erence vector to tell us which way is up. While one can

Figure 3: Demonstration of the translation portion of the user interface. The leftmost image shows the initial pose. The user
then clicks on the head of the model with the middle button and drags the mouse up, zooming in, until the image looks like
the middle image. From this image, the user clicks the left button on the lefthand side of the image and drags to the right,
rotating through the body of the model to get a better look at the mouth from behind (rightmost image).

attribute the DOF in this configuration in a variety of ways,
it is quite natural to remap our controls to the elements of
this transformation.

The ARCBALL orientation change inside the silhouette
(rotation by the arc defined on the sphere) maps to a
change in the direction from the look point to the camera.
The ARCBALL orientation outside the silhouette (rotation
around the principal view ray) maps to changing the di-
rection of the up vector on the screen. To implement the
translation operations, we introduce the following restric-
tions from our previous interface. The view ray transla-
tion operation is restricted to translation along the principal
ray—i.e. it allows a change in the look-to-camera direction
and distance. The pick-and-drag operation is restricted to
operate parallel to the camera image plane. It translates the
look and camera points. Table 1 summarizes this mapping
and the user actions we use to initiate the operations.

One cost of this implementation is that we must explicitly
prevent gimbal lock by limiting the change in the elevation
angle. This maintains the sense of “up” for the world to the
user’s choice as we navigate.

This interface is simple to implement with vector geome-
try operations. Code can be found at

http://www.cs.unc.edu/"livingst/navigate.html
along with more detailed implementation notes.

We can easily add constraints to the rotate and move op-
erations so that only one DOF is affected by the mouse mo-
tion, as was done for ARCBALL. We select the dominant
direction of the mouse motion, defined by the one in which
the motion first reaches a threshold, and then eliminate
any motion in the other dimension for the duration of the
current operation. This implies adding some simple book-
keeping and conditional statements to the implementation.
Currently, we map the controls to four button/modifier se-
quences, but we could use the screen-space subdivision used
in ARCBALL to reduce this to one button for all orientation
changes and one button for all translation changes.

5 Conclusions

Our new navigation interfaces have extended the ARCBALL
interface to provide an alternative full six DOF controller.
One implementation preserves the operations of the ARC-
BALL and adds translation by allowing the user to “pull”
towards a point in the environment and “push” the center
of the ARCBALL to a new position. This interface main-

tains the simple screen motion interface of the ARCBALL
and avoids requiring specific paths for the user to follow.
The operations in this interface will appear to the user to be
quite similar to those in UniCam [7], so the comments re-
garding usability of the operations should apply. The use of
screen real estate is similar to the ARCBALL, however. We
have not performed a formal user study, such as [2], of the
usability of the technique, but by basing our interface on
previous successful interfaces, we hope to inherit usability
from the previous interfaces.

A second, slightly restricted implementation allows the
user to perform the same basic operations. Simplification
derives from tying the screen motions directly to parame-
ters of the standard look-at transformation of the graphics
library. Of the latter interface, a user (computer-savvy but
not familiar with any 3D navigation techniques) commented
after only a minute of navigating how easy and natural it
was to move through the environment. This hardly substi-
tutes for a formal study, but does provide encouragement
that the implementation is sound and successfully mimics
the usability of ARCBALL and UniCam. We have had suc-
cess navigating with both methods and find them suitable
to our needs.

References

[1] BLINN, J. Where am I? What am I looking at? IEEE
Computer Graphics and Applications 8, 4 (July 1988),
76-81.

[2] HiNcKLEY, K., TuLLIO, J., PAUSCH, R., PROFFITT, D.,
AND KASSELL, N. Usability analysis of 3d rotation tech-

niques. In 10t Acm Symposium on User Interface Soft-
ware & Technology (UIST’97) (Oct. 1997), pp. 1-10.

[3] HurrqQuist, J. A Virtual Trackball. Graphics Gems I.
Academic Press, 1990, pp. 462—463.

[4] SHOEMAKE, K. ARCBALL: A user interface for specify-
ing three-dimensional orientation using a mouse. In Pro-
ceedings of Graphics Interface '92 (May 1992), pp. 151—
156.

[6] SHOEMAKE, K. Arcball Rotation Control. Graphics
Gems IV. Academic Press, 1994, pp. 175-192.

Operation Description Action
Yaw and Pitch | Adjust azimuth and elevation of camera | Button-1,drag

Roll Rotate up vector Shift-Button-2,drag
Zoom in/out Translate along principal view ray Button-2,drag
Pan Translate parallel to view plane Button-3,drag

Table 1: Description and mapping of the user actions in the second new interface. The third column gives our mapping
to user interface actions. These are merely our choice, and could be changed in another implementation to suit user or
programmer tastes. Screen-space subdivision could be used to reduce the number of different buttons required, as was done
for the ARCBALL interface.

[6] Woo, M., NEIDER, J., AND Davis, T. OpenGL Pro-

gramming Guide, ond

Press, 1997.

ed. Addison Wesley Developers

[7] ZELEzNIK, R. C., AND FORSBERG, A. Unicam—2D ges-
tural camera controls for 3D environments. In 1999 ACM
Symposium on Interactive 3D Graphics (Apr. 1999),
pp. 160-174.

