

Automatic layout of variable-content
print data

Eldan Goldenberg
Information Infrastructure Laboratory
HP Laboratories Bristol
HPL-2002-286
October 23rd , 2002*

E-mail: eldango@cogs.susx.ac.uk

print layout,
paste-up,
floorplanning,
genetic
algorithm,
self-organising
documents,
BICAS

The increasing quantity of data held by organizations about individuals,
and the recent development of digital press capable of one-off printing at
a quality rivalling offset machines, have created a demand for a method to
automatically generate page layouts. The present solutions to this are
either to use skilled labour to hand-design each page, or constrain the
design tightly by fitting everything to a template, both of which have
significant drawbacks. This thesis describes a Genetic Algorithm (GA)
that automatically generates page layouts, without the need for costly and
time-consuming human design, and with considerably more flexibility
than a template-based approach. The GA is based on related work in VLSI
floorplanning, which is described and adapted for the print context. This
method was found to produce attractive layouts with a relatively small
number of iterations, even though the only explicit goal in the program
was to minimize wasted space. Visual representations of the layout are
presented and discussed, together with an analysis of the search space and
the speed with which the GA finds a solution. The range of document
types for which this method produces attractive layouts is considered, and
finally suggestions are made for future work, which would make the
system into a more complete layout generation tool. The key novel ideas
in this thesis are summarised in a patent application entitled ‘Page
composition’ submitted by Hewlett-Packard to the UK Patent Office on
Friday 30th August 2002.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

Automatic layout of
variable-content print data

MSc Dissertation

Eldan Goldenberg (eldango@cogs.susx.ac.uk)

MSc in Evolutionary and Adaptive Systems, August 2002

School of Cognitive & Computing Sciences

University of Sussex, Brighton, UK

Research conducted at HP Labs, Bristol

May – August 2002

mailto:eldango@cogs.susx.ac.uk

Eldan Goldenberg Automatic layout of variable-content print data

Acknowledgements

I would like to thank my supervisors – Paul Layzell & Dave Cliff at
HP Labs, and Chris Thornton at Sussex – for their guidance and
encouragement.

Eldan Goldenberg Automatic layout of variable-content print data

Contents
1. Introduction ..5
2. Background..6

2.1. Existing software ..6
2.2. Work on related problems..7

2.2.1. Fitting websites into variable sized windows...7
2.2.2. Bin packing problems ..7
2.2.3. Knapsack packing ..9

2.3. Techniques ...9
2.3.1. Genetic Algorithms ..9
2.3.2. ‘Hybrid’ Genetic Algorithms ... 10
2.3.3. Non-evolutionary approaches .. 10

2.4. Summary..10
3. The program ..11

3.1. Choice of approach...11
3.2. Method of the original papers ..11

3.2.1. Problem representation... 11
3.2.2. Solution evaluation... 12
3.2.4. Mutation and crossover operators.. 16
3.2.4. Cohoon et al.’s parallel GA ... 16

3.3. Technical details of the program ...17
3.4. Summary..17

4. GA Results..18
4.1. Parameter settings ...18
4.2. Comparison with known data ...18
4.3. Performance on randomly generated data ..19

4.3.1. A note on measuring the speed with which a GA finds a solution... 19
4.3.2. Results from random data .. 20

4.4. Summary..22
5. The size of the search space...23
6. Evaluating the GA in the print context ...26

6.1. Aesthetic quality of layouts produced by the GA ..26
6.2. Controlling the aspect ratio..29

6.2.1. Incorporating the aspect ratio into the cost function .. 30
6.2.2. Incorporating the aspect ratio into the area calculation ... 31
6.2.3. Allowing relaxation of the aspect ratio constraints ... 32

6.3. Grouping items together ..33
6.3.1. Division into two groups... 33
6.3.2. Division into more than two groups .. 34

6.4. Summary..35
7. Discussion & further extensions...36

7.1. Constraints on the selection of objects...36
7.2. Strategies for adding whitespace..36
7.3. Taking account of content ...37
7.4. Summary..37

8. Conclusion..38
References..39
Appendix A: Table of results ..41

Eldan Goldenberg Automatic layout of variable-content print data

1. Introduction
As marketers gather ever more detailed information about consumers and demographic groups,
there is an increasing need for the ability to automatically generate customised documents for
individual recipients. Systems do exist for this, but they are currently limited to template-based
layouts, and lack the flexibility to deal with unspecified numbers of print objects, where these objects
may have variable sizes and proportions. This project aims to lay groundwork for a more powerful
self-organising document architecture, by adapting techniques used for formally related and well-
studied optimisation problems from different domains.

After high-level decisions are taken, such as the overall look and feel of documents to be created,
there are two stages to the production of an individual document: Content selection and layout.
First a set of items have to be chosen from a database such that they fit onto a fixed-size page, while
maximising the value of the contents. To generate documents for individual recipients, this content
selection could be based on scoring each item in a database for how interesting it is likely to be to the
chosen recipient or group of recipients. Once a selection of items has been made, they must be fitted
into the available space, with the additional constraints of ordering and grouping the objects in a
meaningful way, and making the result aesthetically pleasing.

Both parts of this task are analogous to general classes of problem that have been well studied for
different domains. The selection of content can be seen as a knapsack-packing problem, and fitting
items into a finite space is a form of bin packing, both of which are discussed in more depth in
Section 2.

For a purely template-based solution, these two sub-problems are independent, because the contents
can be selected with the prior knowledge that the template has n spaces for items of each type, so
precisely n items should be chosen. In a more flexible system this is not the case; a more space-
efficient layout allows more items to be selected, the selection of more flexibly displayed items allows
for a more space-efficient layout, and if the layout produces a space of a certain size, an additional
print object of the right size and shape could be selected to fill that gap. Due to restrictions of time
and space, this study will only approach the problem of layout, but ultimately a working system
would have to optimise both the content selection and the layout together.

The remainder of this report is structured as follows: Section 2 describes the problem in more detail,
along with relevant previous work and the techniques that have been used. Section 3 outlines the
workings of the layout system I have developed, while Section 4 presents the results of a number of
test runs. Section 5 analyses the search space of this problem and compares my approach to some
alternative methods. Section 6 evaluates the aesthetic quality of layouts produced by this layout
engine and describes some extensions that make it more useful, and Section 7 suggests future
directions for continued development of this system.

~ 5 ~

Eldan Goldenberg Automatic layout of variable-content print data

2. Background
The value to organisations of being easily able to send a message to a list of people has long been
recognised. Computers are already used to automate this task to some extent, by providing the
ability to draw names and addresses from a database and paste them into a standard letter. This
helps to give recipients the impression that the letter they receive has been drafted for them
individually, as opposed to a “Dear car owner” letter, or letters with blank spaces to be filled in by
hand. However, this technology is very limited in terms of how much content can really be
customised.

The volume of data that is gathered about individual consumers is enabling a move from pull-based
marketing – where customers asks for information about specific products – to push-based
marketing: Organisations proactively contacting potential and existing customers to advertise
products they are expected to be interested in, based on what is already known about their buying
habits. Online services such as the Amazon.com recommendations engine, which recommends
products based on a user’s past purchases and feedback [1], show how an automated system can
target information to individual customers. Users are presented with a list of product images and
descriptions, and can choose to have a recommendation of the day emailed to them.

At present the layout options available for serving customised content (and for the related problem of
adapting web pages to display neatly in different sized windows) are not very flexible. For the most
part, systems simply work by fitting items into boxes in a template, keeping the page tidy by pre-
setting the size and number of images, and constraining the amount of text in an item. If the
potential of customised document delivery is to be fulfilled, a technique is required that will achieve a
‘finished’ look without relying on fixing the size of the document contents: a physically self-
organising document.

A general-purpose tool to create document layouts, as opposed to one that simply fills a set of
templates for a particular class of documents, can not rely on any assumptions about the structure of
the information to be printed. This means that the large space of potential layouts must be searched
freshly for each new selection of print objects, which can be immensely time-consuming.

It is also difficult to encapsulate the rules used by a human paste-up artist in a form that is useful for
the design of a computer system, because they tend not to be explicit. Graphic design textbooks tend
to illustrate good design with a selection of clear examples, rather than formally describe the rules or
principles to be followed [15], making it hard to craft a function for scoring layouts aesthetically.
However, there are some general principles that characterise attractive page layouts, such as
increasing visual symmetry, and balancing contents and whitespace evenly around a page.

Section 2.1 examines existing software that partially automates the page layout process, 2.2
describes formally related problems which have been extensively studied, and 2.3 suggests
techniques that may be brought to bear on this problem.

2.1. Existing software
A number of systems have been developed to provide assistance with the creation of page layouts,
ranging from options in software that do a little tweaking for the user, through to a fully automated
layout system, though they all constrain the task in some way.

Perhaps the simplest form of these is the addition of a simple ‘shrink to fit’ function into software: for
example Microsoft PowerPoint will automatically reduce the font size of a paragraph if it extends
beyond the bottom of a slide, and Microsoft Word has an option called “Shrink to Fit” which tries to
find the smallest reduction in font size that reduces the number of pages required to print a
document. These programs do not attempt to automatically create a layout, but they do provide
users with some assistance that can save time.

There are a number of software products on the market that claim to automatically lay out photo
albums or pages of photos, with varying degrees of flexibility. Most (such as [3]) are actually
template-based applications, which simply fit pictures into slots in a pre-defined template, cropping or
resizing the images to fit the space to which they are allocated. There is usually a degree of flexibility

~ 6 ~

Eldan Goldenberg Automatic layout of variable-content print data

offered to the user, who can move pictures once they have been placed and sometimes over-ride
decisions made by the software.

Some more sophisticated systems generate free layouts. In some cases, the only criterion is saving
space by fitting a given number of pictures onto the smallest possible number of pages of expensive
photo paper [11], but Kodak have developed two systems which also attempt to take into account
aesthetic considerations. The commercially available “Kodak Memory Albums” [13] has an
automatic layout option, which produces a photo album from a collection of pictures, assigning each
image to a page and placing it on the page. This software only takes image size into account,
ignoring any other information about the images, but Kodak also report a prototype system [8]
which also allows users to specify how important particular images are (more important ones are
displayed larger) and to control the order of pictures. Both of these systems are specific to the
domain of photographic images, and they do make domain-specific assumptions: both allow images
to be resized considerably to fit, and the prototype system [8] also rotates images and allows partial
occlusion, which would make little sense with text.

2.2. Work on related problems
There is a great deal of work in the literature on related layout problems, which are not specific to
the print domain but have important similarities.

2.2.1. Fitting websites into variable sized windows
A rarely-used element of the Cascading Style Sheets (CSS) specification [30] allows designers to
create “liquid layouts” for web pages, which adapt to changes in the relative size of contents and
window with slightly more flexibility than simply changing the word wrapping [18]. It is also
possible to use this technology for printed documents, and provide some flexibility, such as
constraints to describe where page breaks are acceptable or should be avoided [31]. Even for web
pages, this technology does not allow enough flexibility to cope with a wide range of document
contents, and they do not work particularly well for paged media such as print documents.

A more flexible approach is being developed by a group at Washington University, based on
constraint satisfaction [28]. Their prototype software allows a web designer to specify a complex set
of interacting constraints, based on which the browser has to dynamically render a page [2]. This
has the advantage of allowing different templates to be selected based on certain conditions (for
example choosing a layout with more columns for a wider browser window), and preserving
meaningful relationships between parts of the content.

Both the CSS techniques and the constraint-based system are useful to web designers, but they are
principally aimed at fitting fixed size contents to a single variable-sized page. For print media the
challenge is slightly, but importantly, different: to fit variable sized contents into one or more fixed
size pages. This falls into a general class of problems commonly referred to as bin packing.

2.2.2. Bin packing problems
‘Bin packing’ [6] describes a general class of problems based on re-arranging a number of items to fit
into bins of a fixed size, in order to minimise the wasted space and use the least number of
containers. None of the studies listed in this section deal with aesthetic considerations, because they
are not relevant to the specific applications that were studied, but they provide useful approaches to
fitting content space-efficiently onto a page. There are several types of bin packing problem, which
have been applied to different real-world problems:

2.2.2.1. One-dimensional bin packing
In one-dimensional bin packing, there is only one variable that distinguishes between items: each
takes up a particular amount of a limited resource, such as space or time. The objective is to
distribute items between multiple containers so as to use the space most efficiently, minimising the
total number of containers required. One-dimensional bin packing has been used as an analogy for
task scheduling problems such as assigning jobs to different workshops or CPUs in order to minimise
the idle time of each [5].

~ 7 ~

Eldan Goldenberg Automatic layout of variable-content print data

2.2.2.2. Two-dimensional bin packing
In two-dimensional bin packing, items must be placed on a flat surface, which is finite in both
dimensions, with the aim of minimising the space wasted between items. Although there are some
examples of algorithms to reduce the number of fixed-size containers (such as [11] – the photo
printing system described in Section 2.1), most applications of this paradigm focus on reducing the
size of a single container that must hold all of the items to be packed.

One such example is the ‘stock cutting’ problem, in which a pattern must be found to cut requested
shapes from an (to all intents and purposes) endless roll of material, such as paper, steel or cloth [25,
7]. The primitives to be organised can either be rectangular objects that are only amenable to re-
ordering (as in [25]), or they can be irregular shapes that may also be rotated (as in [7]). In either
case, the optimal arrangement is one that minimises wasted material by using as close to the full
width of the material as possible at all times.

Another common application of 2d bin packing is for reducing the footprint, or ‘floorplan area’ of
circuits in VLSI manufacturing [27, 22, 12, 16]. In this case, the objective is to minimise the
unused spaces between circuit modules, thereby reducing the overall area required to contain the
circuit, which could either allow it to be fabricated on a smaller silicon wafer or allow more circuits
to fit on one wafer. This is sometimes attempted by re-ordering alone and sometimes by changing
the aspect ratios of modules. The aspect ratio can be regarded as continuously variable, but this does
not realistically account for the possible ways that a circuit module could be re-arranged, so it is
often treated as a discrete variable with a small number of acceptable values [12].

There are actually other important constraints to this problem in the real world, because the position
of certain modules is fixed by other design constraints, and modules in the circuit are connected by
varying numbers of wires. In order to keep the overall length of wiring required to connect the
circuit, modules that are densely interconnected need to be placed close to each other. There is a
range of emphasis in different studies, from [27] which only considers the length of wiring required,
to [22] which only considers the area of a floorplan.

Wirelength has potential to be a useful concept for document layout generation, by analogy to
relatedness between items. The same algorithms that group together densely interconnected circuit
modules should be capable of grouping together closely related print objects, such as an image and
text that relate to the same subject.

2.2.2.3. Three-dimensional bin packing
One and two dimensional bin packing can be regarded as special cases of 3d bin packing, in which it
is simply assumed that one or two dimensions are uniform [17]. The paradigm here is that objects
have to be fitted into the smallest possible number of finite-size containers, and the most common
practical application of 3d bin packing is for the loading of goods into shipping containers [21].

2.2.2.4. Guillotineable packings
In some real world applications, it is important that the solution be gu llotineable, which means that
it can be produced by successive straight cuts all the way across the material. This is important for
stock cutting with certain types of cutting equipment [25] and has the advantages of lending itself
easily to a variety of representations [29] and reducing the number of possible packings for a given
set of items, potentially making the problem computationally less costly [19].

i

Some commonly used document layouts are guillotineable, such as this report (each section can be
separated from the others by a single cut across the page), and any columnar layout that does not
allow items to span multiple columns or text to flow around images that partially occlude it.

2.2.2.5. Online bin packing
A further variant of the standard bin packing problem formulation is online bin packing, which
operates in real time. Rather than having a full list of objects to be packed, the system only has
information about open containers, the items packed so far and one new item at a time [5]. This
requires a completely different approach, but is not important for page layouts as they can be
generated with complete information. Even when a fresh set of items is selected dynamically for

~ 8 ~

Eldan Goldenberg Automatic layout of variable-content print data

each layout, the layout engine can operate with complete knowledge of the size of the container (the
document being produced), and can wait for a complete selection of items to be sent.

2.2.3. Knapsack packing
All of the studies reported in Sections 2.2.1 and 2.2.2, and all of the software in Section 2.1, have
assumed that there is a predetermined list of items to be packed. This is useful for creating self-
organising documents, but need not necessarily be the case. Given a large database of entries, each
of which has been ranked for relevance, and a fixed size document, there are various ways to
approach the selection of items. One could rigidly select the first n items in order of relevance, or a
more flexible approach could be more productive.

Knapsack packing problems are a general class of problems in which items must be selected to fit
into a container of limited size, to maximise the total value of the packed items. This has been
applied to many resource allocation problems, such as radio bandwidth [14]. The selection of items
to place on a page can be regarded as a knapsack packing problem.

Whether the selection of items is regarded as input to the system, or part of the problem to be solved,
good selection is crucial to producing a good layout. In extreme cases, a layout engine can not
possibly succeed if it is provided with too many items to fit on a page, and if it either has too few
items or a set which are not compatible with each other (such as a column as long as the whole
page and a banner as wide as the page, which could not be placed together without overlap) it will
not be able to produce good results. Selection can also inform placement in more subtle ways, by
flagging objects with different levels of importance, and determining which items are related to
which others, and hence should be placed close to each other.

2.3. Techniques
The nature of both bin packing and knapsack packing problems makes an exhaustive search of the
solution space highly impractical, because bin packing is NP-hard [17] and knapsack packing is NP-
complete [14]. For a page layout engine, the relationship between the number of objects to be placed
and the size of the search space is exponential and will be explored in detail in Section 5.

Given the size of the search space, a technique that only searches a portion of it will be more
practical, provided that it still finds solutions of a high quality.

2.3.1. Genetic Algorithms
Evolutionary Algorithms [10] are a broad class of algorithms that use “selection acting repeatedly on
heritable variation, where that variation is essentially blind, rather than incorporating detailed
heuristics” [26]. There are many variants of exactly how to implement these, but the form
considered here (Genetic Algorithms, or GAs [9]) is that the algorithm starts with a population of
solution candidates, and successively produces new candidates (‘offspring’) by small random
variations from the existing population. These potential solutions are then given a score (‘fitness’) in
relation to how well they solve the problem being tackled, and the more fit individuals are more
likely to be used in producing the next generation.

GAs are often used to tackle NP-hard problems because the amount of compute time required to
arrive at a satisfactory solution does not necessarily increase in step with the size of the search space,
as is the case for an exhaustive search. The effectiveness or otherwise of a GA depends on the nature
of the search space. If the search space has no structure at all – in other words if a small change to
a potential solution produces a large change in its fitness – a GA can be expected to perform little
better than a random search. GAs work best in a problem space in which solutions with a high
fitness are surrounded by a group of similar solutions that lead the search towards them, rather than
simply being isolated fitness ‘spikes’ surrounded by poor solutions. In these conditions a GA will not
necessarily find the best possible solution, but will find a good solution in a reasonably short time.

Characterising the search space is usually impossible for any problem for which a GA is likely to be a
useful approach, because it requires an exhaustive mapping of the fitness of each potential solution,
and the intractably large size of the solution space is normally the reason for using a GA. The choice
of operators applied to solutions is also of great importance here; appropriate operators must always

~ 9 ~

Eldan Goldenberg Automatic layout of variable-content print data

produce small changes in the offspring, rather than radically transforming it in a way that loses the
structure of the parent.

Because a GA can be stopped at any time in the run, and often finds a reasonably good solution
some time before the optimal one, a cut-off time can be specified for each run if the search is not fast
enough. GAs of various flavours have been applied to 2d bin packing problems in [7, 23, 16, 22]
and to knapsack packing in [32].

2.3.2. ‘Hybrid’ Genetic Algorithms
Configuring a GA such that it reaches a good solution in a reasonable amount of time is not an exact
science; because this must be done without complete knowledge of the search space, it takes a
certain amount of educated guesswork, and sometimes the wrong choice of parameters or operators
can stop a solution from being discovered at all, by either restricting the search to part of the
solution space or introducing too much noise. To reduce the amount of guesswork required, and
avoid having to re-invent the wheel, many researchers have used ‘hybrid’ GAs which combine
knowledge-based heuristics with a GA to search the intractable part of the problem space. This
approach often produces systems that run faster than ‘pure’ GAs, though at the cost of no longer
being able to generalise to other problems, and it does run the risk of constraining the search space
in a way that stops evolutionary search short of finding an adequate solution.

Hybrid GAs have been applied to 2d bin packing problems in various ways. [7] combines an expert
system with a GA to solve a stock cutting problem, and [22] adds heuristic operators to a standard
GA, resulting in faster solution finding than the standard GA against which the technique is
benchmarked.

2.3.3. Non-evolutionary approaches
GA papers often lack useful comparisons between the GA and other algorithms for solving the same
problems. In some contexts this may be because it is difficult to conceive of a solution to the problem
that does not rely on some sort of evolutionary search [26], but often the omission is not justifiable
on those terms. Even when comparisons are provided, authors often fail to compare like with like, as
in [22] which compares run times across inconsistent computer systems or [24] which reports a
reduction in the number of program cycles required to find a solution without mentioning an order-
of-magnitude increase in the computational overhead of one cycle.

To evaluate a GA system usefully, it must be compared with other techniques. This paper will look
at exhaustive searching of the problem space, and comparisons between the GA and simulated
annealing (which has been used for 2d bin packing by [29]) in Section 5.

2.4. Summary
Section 2 has described the problem of generating customised page layouts. Section 2.1 examined
existing software that addresses this problem, Section 2.2 considered related problems that have been
more widely studied, and Section 2.3 suggested techniques that might be used to approach this task.

~ 10 ~

Eldan Goldenberg Automatic layout of variable-content print data

3. The program
A complete page layout system must satisfy a number of related requirements. It must be able to
select an appropriate group of print objects from a large collection, and it must then lay out these
objects in a way that is space-efficient, aesthetically pleasing and keeps the information content
coherent by placing related items together, in an appropriate order.

A proper consideration of the aesthetics of page layouts is beyond the scope of this study, because it
would require an extensive investigation of the unwritten rules used by human paste-up artists, or a
sophisticated AI system capable of learning by example, as postulated by [15]. The other objectives
listed above are made more tractable by tackling one at a time, so this study started with a system to
produce space-efficient layouts, which it is hoped will also make a contribution towards the
aesthetics of the result, by avoiding yawning expanses of whitespace.

Sections 3.1 & 3.2 describe the method of a paper that I have chosen to replicate as a starting point,
and Section 3.3 describes specific details of the program I developed.

3.1. Choice of approach
Because of the close correspondence between VLSI placement and the problem of placing objects on a
printed page, Cohoon et al.’s previously published VLSI placement system [4] was used as a starting
point. This system used the total area required for a layout and the total length of wiring required to
connect the circuit as the measure of solution quality. Minimising the area transfers directly to the
print context, and the wiring length will be adapted (as described in Section 6.2) as way of grouping
items together.

The problem representation that Cohoon et al. used was set out initially in an earlier paper by Wong
& Liu [29], who used simulated annealing to find solutions, and Cohoon et al. [4] adapted this to a
GA.

3.2. Method of the original papers
3.2.1. Problem representation
The chief innovation of the Wong & Liu algorithm [29] is their use of normalised Polish postfix
expressions to represent a floorplan layout. This method has the advantage of a 1-1 correspondence
between expressions and unique layouts, whereas previous work used representations that have a far
larger number of expressions; in effect a larger problem space.

The problem is stated as an attempt at producing the floorplan layout with the smallest area and
shortest wiring necessary given a list of modules to be placed (equivalent to finding the most space-
efficient layout of a given set of print objects). For each module, the area (A), upper and lower
bounds for aspect ratio (r and s), and connection strength to each other module (which represents
the wiring density between pairs of modules) are pre-specified. Given this information, the system
aims to find the best guillotineable packing of these modules.

Any guillotineable packing can be represented as a slicing structure; the series of straight cuts that
must be made across the container to produce the desired floorplan. This structure can be
represented in turn as a tree [20], or as a Polish postfix expression, with a number to represent each
module (or operand), and two operators: ‘*’ to represent a vertical cut, and ‘+’ to represent a
horizontal cut. Thus the floorplan in Figure 1:

5

3

1 2
4

Figure 1: an example slicing floorplan (Figure 8 from [29])

~ 11 ~

Eldan Goldenberg Automatic layout of variable-content print data

Can be represented by the slicing tree1 in Figure 2:

 +
 / \
 * 5
 / \
 + 4
 / \
 * 3
 / \
 1 2

Figure 2: the slicing tree for the floorplan in Figure 1

Or the following Polish expression1:

1 2 * 3 + 4 * 5 +

In the form described so far, this notation still allows multiple well-formed expressions for one slicing
structure, which Wong & Liu claim is a drawback because it increases the size of the search space,
and distorts the search by giving some slicing structures many expressions, while others may still
only be represented by one [29, p102]. To remedy this, they added an additional constraint – that
no consecutive operators may be the same – and called expressions that satisfy this “normalised
Polish”. There is only one normalised Polish expression for each slicing structure; in GA terms, there
is a one-to-one genotype to phenotype correspondence, whereas if non-normalised Polish expressions
are allowed there are multiple genotypes corresponding to one phenotype.

Cohoon et al. [4, p453] found that the GA performed better if genotypes were only required to be
well-formed Polish expressions, not necessarily no malised ones. Following their finding, the system
presented here does not restrict its search to normalised Polish expressions, but the concept of
normalised Polish expressions is helpful for analysis of the problem space, because it facilitates
calculation of the number of possible unique slicing structures.

r

3.2.2. Solution evaluation
In order to work out a cost for each possible solution, it is necessary to work out the exact position
and dimensions of each module, from which the total solution area and the wiring length required to
connect modules can be derived.

3.2.2.1. Area computation
The Polish notation described in Section 3.2.1 only specifies the overall structure of slices that must
contain a list of modules. To produce an actual layout from this, it is necessary to choose
dimensions for each slice such that it is large enough to contain the module that has been assigned
to it. If the modules all have fixed dimensions, this is a simple matter of adding up the sizes of the
containing rectangles into which each module fits, each of which must be tall and wide enough to
contain its module, but for variable aspect ratio modules it is not so straightforward. Different
choices for the implementation of each slice can change the overall area of the layout, and the
choice for each slice is not independent of the others, as illustrated by Figure 3:

1 Neither the Polish expression nor the slicing tree specify the width and height of the modules or the slices; they only describe
the slicing structure itself. Section 3.2.2.1 explains how the size and proportions of each section of the slicing floorplan are
worked out, and Sections 6.1 and 7.2 discuss the issue of how to place the module itself within its slice.

~ 12 ~

Eldan Goldenberg Automatic layout of variable-content print data

f f
i tr) t

Figure 3: the interdependence of module implementations – both implementations of module 2 are within its aspect ratio
constraints, but the choice which is the most ef icient option in the diagram on the left, is no longer the most ef icient option

once module 3 (which is not perm tted to s etch any wider is added, as in the diagram on the righ .

Wong & Liu [29, pp103-4] outline a method for dealing with variable aspect ratio modules. For
each individual module, a graph can be drawn of width against height, and a line (bounding curve)
can be plotted that joins all of the points with the desired area. This line will be a hyperbola, as in
Figure 4:

0

1

2

3

0 1 2 3

width

he
ig

ht

tiFigure 4: the bounding curve for a module with no constraints on its aspect ra o and a fixed area of 2

In practice, the aspect ratio of a module is normally bounded, which means that the line is only a
hyperbola in between the upper and lower aspect ratio limits. Outside these limits, there are vertical
and horizontal lines, because increasing one dimension beyond its range will not decrease the other,
producing a graph as shown in Figure 5:

~ 13 ~

Eldan Goldenberg Automatic layout of variable-content print data

0

1

2

3

0 1 2 3

width

he
ig

ht

t t ; , t Figure 5: a bounding curve with aspec ra io constraints in this example the module area is 2 and the aspect ra io may vary

from 0.5 to 2.0, allowing dimensions from 2x1 to 1x2

The region above the line represents all of the possible dimensions for a rectangle that will contain
the module, and any point on the hyperbolic section will have no wasted space. For any individual
module, any point on that curve would produce an optimal packing, but once modules are combined
the picture becomes more complicated. The bounding curve for the composite produced by any
operator can be derived from the bounding curves of its two operands; if the operator is a vertical cut
then the widths must be added and the greater of the two heights used, and vice versa. In practice
this becomes very costly to compute, as hyperbolae have to be added to each other, so Wong & Liu
follow a precedent from previous work [20] and use a linear approximation of each module’s
bounding curve. To derive a first-order approximation, one need only compute the corners at each
end of the hyperbolic section, which are the (x,y) co-ordinates for the two allowed extremes of aspect
ratio, as shown in Figure 6:

0

1

2

3

0 1 2 3

width

he
ig

ht

Figure 6: a first order linear approximation of the bounding curve in Figure 5

To work out the bounding curve for a composite module produced by placing two modules next to
each other, the bounding curves of the two modules need to be combined appropriately. If linear
approximations are used, we only need to add the ‘corners’ of the two curves to produce the
composite. If modules ‘a’ and ‘b’ are to be combined, the composite curve is derived from their
bounding curves (henceforth Γa and Γb), as follows (from [29], p103):

~ 14 ~

Eldan Goldenberg Automatic layout of variable-content print data

For a horizontal slice: Γab+ = {(u,v+w)|(u,v)∈ Γa and (u,w)∈ Γb }
For a vertical slice: Γab* = {(u+v,w)|(u,w)∈ Γa and (v,w)∈ Γb }

The example below illustrates this process for the modules set out in Table 1:

Module Area (A) Minimum aspect ratio (r) Maximum aspect ratio (s)

a 2 0.5 2

b 8 0.5 2

Table 1

For these modules to be combined by a horizontal slice (ab+ in Polish notation), the corners of the
composite bounding curve can be derived as in Table 2:

Corner from b Corresponding value from a Composite corner

(2,4) (2,1) (2,5)

(4,2) (4,1) (4.3)

Table 2

This can be represented by the graphs in Figure 7:

module a

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

width (u)

he
ig

ht
 (v

)

+

module b

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

width (u)

he
ig

ht
 (w

)

=

composite ab+

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

w idth (u)

he
ig

ht
 (v

+w
)

Figure 7: combining two modules

A given Polish expression can be translated into a single composite bounding curve by iteratively
replacing each operand with its result, and the best area can easily be found from the composite
bounding curve, by simply finding the point on the bounding curve for which the product of x and y
is minimum.

3.2.2.2. Wirelength computation
It is not actually necessary to decide where each module will be placed in order to work out the area
of a solution, as long as the containing rectangles are big enough. In order to work out the wiring
length, the actual positions of the modules must be established, which also means that for each
containing rectangle one set of dimensions must be chosen from the corners that have been
calculated. This can only be done once the overall floorplan area is known, because the slicing tree
must then be parsed again from the root downwards, and each module’s dimensions chosen on the
basis of the implementation of the composites to which it contributes.

Once this has been done, the result is still not the exact positions of the modules, only the positions,
sizes and proportions of their containing rectangles. Wong & Liu [29] stated that they assumed each
module was simply centred in its container, and Cohoon et al. followed their lead [4, p454].

~ 15 ~

Eldan Goldenberg Automatic layout of variable-content print data

Once the positions of the individual modules are known, the wirelength is calculated as the
Manhattan distance from the centre of one module to the centre of another, multiplied by the
connection strength specified in the dataset.

3.2.2.3. The cost function
Wong & Liu [29] calculated the cost of each solution as:

cost = A + λW

Where A is the floorplan area, W is the total wiring length, and λ is a constant that determines how
large a contribution wirelength makes to the overall cost. Setting λ to 0 makes the system ignore
wirelength entirely, and the higher the value of λ, the less area is emphasised.

Wong & Liu experimented with values of λ from 0 to 3, and found that it does provide some degree
of control over how much each term is optimised, but that minimising the area still produces a
shorter wirelength than random floorplans, and vice versa, because the two objectives are partially
correlated.

3.2.4. Mutation and crossover operators
Wong & Liu used three moves (each selected with equal probability) to change from one Polish
expression to another, as follows (from [29] p102):

M1 Swap two adjacent operands
M2 Reverse the operators in one chain2 of operators
M3 Swap an operand with an adjacent operator

Note that M1 and M2 can only create well-formed Polish expressions, and will never change a
normalised expression into a non-normalised one, whereas M3 can create illegal strings. Therefore
the expression produced by any M3 move has to be checked, and if it is not well-formed Polish (or
normalised Polish in Wong & Liu’s case) the move must be rejected, and another operand-operator
pair must be selected to try out.

Cohoon et al. [4] used these three moves as their mutation operators, and added three crossover
operators, also each selected with equal probability, which were designed to copy building blocks
from the parents, whereas a standard one- or two-point crossover would produce illegal strings more
often than not. Their crossover operators are as follows:

CO1 Copy the operands from one parent into the same positions in the child string, then use the
operators from the other parent to fill the gaps
CO2 Copy the operators from one parent to the same positions in the child, and fill the gaps with
the operands from the other parent
CO3 Copy one parent, randomly select an operator, and copy its operands (both the arguments to
that operator itself and any below it in the slicing tree) in the same order, and then copy all of the
other operands in the order in which they appear in the other parent3.

Each time a crossover operation is required one of these is chosen, with equal probability. All three
of these operators can only create well-formed Polish expressions, and Cohoon et al. were not
concerned about norma ised Polish expressions (see Section 3.2.1), so no further checking was
required.

l

3.2.4. Cohoon et al.’s parallel GA
Cohoon et al. [4] used an unusual sort of genetic algorithm, which they call a ‘GAPE’ (Genetic
Algorithm with Punctuated Equilibria). The concept was devised to make efficient use of a parallel

2 A chain of operators is an uninterrupted sequence of 1 or more operators between operands

3 Due to time constraints, CO3 is not implemented in the present version of the GA. This does not seem to have impaired
performance, as shown in Section 4.2

~ 16 ~

Eldan Goldenberg Automatic layout of variable-content print data

processor array, but the actual tests that they report were run with a serial simulation of the parallel
system.

Their technique differs from a standard GA in that the population is divided into N subpopulations,
and selection and crossover only occur within a subpopulation. Every G generations (the ‘epoch
length’) the populations are mixed, by copying a proportion (the proportion used is unspecified) of
genotypes from each to the others. It is hoped that this strategy increases the diversity of the
population, decreasing the risk of premature convergence on a local optimum that is far removed
from the globally optimal solution.

3.3. Technical details of the program
The present study used a replication of Cohoon et al.’s GAPE [4] as a starting point. For the most
part Cohoon et al. described their system in enough detail for precise replication, but they did not
specify their selection method.

My implementation uses linear rank selection, which in turn makes the scaling of fitness scores
unimportant, as long as the order of genotypes in a fitness-ranked list is preserved. Therefore,
instead of using the standard deviation based fitness measure that Cohoon et al. used, this program
simply multiplies the cost by –1. The only feature of this measure that is important to the
functioning of the system is that it must be maximised, whereas cost must be minimised, and this
specific measure has the advantage of being faster to compute than one that requires a standard
deviation to be calculated.

As with any rank selection system, the difference in selection probability between the best and worst
scoring solutions in the population determines the selection pressure, and in this instance it is a
tuneable parameter. The following parameters are all easily manipulated by the user:

• Population size
• Number of subpopulations (must be a factor of the population size)
• Epoch length
• Crossover rate (the probability for each reproduction of a crossover taking place)
• Mutation rate (the probability for each reproduction of a mutation happening)
• Selection pressure
• Wirelength weight (as per λ in Section 3.2.2.3.)

There are also twin stopping criteria: a maximum number of generations to run for, and a number of
generations after which to stop if the best solution has not improved.

For every run, the program saves data including:

• The population at the start and end of the run
• The genotypes of each individual in every generation in which a new best solution emerged
• The area & wirelength of the best individual discovered in that run
• The number of generations run until that individual first emerged
• The highest fitness score in every generation

3.4. Summary
Sections 3.1 & 3.2 have described the GAPE used by Cohoon et al. [4] to minimise the area and
wiring length required for VLSI circuits. Section 3.3 has outlined details specific to the present
implementation, which will be used to minimise the whitespace in page layouts.

~ 17 ~

Eldan Goldenberg Automatic layout of variable-content print data

4. GA Results
This section presents results from tests of my implementation of Cohoon et al.’s GAPE, designed to
compare its performance with the implementation in [4] and assess the algorithm’s speed. Section
4.1 will describe the system parameters which were used for all subsequent experiments unless
otherwise stated, Section 4.2 will compare my implementation directly with Cohoon et al.’s and a
random walk on a dataset from [4], and Section 4.3 will summarise the performance of the system
on a range of random data.

4.1. Parameter settings
The performance of any GA system is affected by the settings chosen for a large number of
parameters, and while it is desirable for a system not to be too brittle in its response to parameter
selections, setting them to appropriate values is important. To find appropriate parameter values,
preliminary tests were run with a range of randomly generated datasets within the constraints set
out in Table 3 (following the example of Cohoon et al. [4] p455), using a range of parameters as
listed in Table 4.

Number of modules/objects to be
placed

One set for each of 4 to 40

Area of each module (A) Randomly selected from the uniform distribution [1,20]

Maximum aspect ratio (s) Randomly selected from the uniform distribution [1,4]

Minimum aspect ratio (r) 1/s

Connection matrix Each module is connected to a randomly selected set of
others with a weight of 1

Table 3: The parameters u ed to generate random test datas

Parameter Minimum value tested Maximum value tested

Population size 10 360

Number of subpopulations 1 6

Crossover rate (per genotype) 0.1 1.0

Mutation rate (per genotype) 0.1 1.0

Selection pressure 1 5

Table 4: The range of parameters tested in the preliminary exploration

From this range, the following parameters were found to produce good results after relatively few
evaluations: Population size 100, divided into 2 subpopulations, crossover rate 0.8, mutation rate
0.6 and selection pressure 3.

4.2. Comparison with known data
One of the experiments reported by Cohoon et al. [4] is described in enough detail to reconstruct the
dataset that they used and repeat the experiments, so as to benchmark the performance of the
system presented here against theirs. The dataset is the 16-module structured set, for which every
module has a unit area, an aspect ratio fixed at 1, and connection weights such that in the ideal
configuration (as shown in Figure 8) each module is connected to each of its neighbours (horizontal
and vertical only; no diagonal connections) with a weight of 1. The optimal configuration has an
area of 16 and a total wirelength of 48, as shown in Figure 8:

~ 18 ~

Eldan Goldenberg Automatic layout of variable-content print data

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 8: the optimal solution for the structured dataset

The GA was run 100 times using the parameters listed in Section 4.1 and a wirelength weight of 1,
as in [4], for 2560 generations, in order to test the same number of evaluations as Cohoon et al.
used4. Each run lasted approximately 2 minutes on a Pentium-IV based PC running Windows. The
average cost of solutions found by the GA presented here was 98.6 (standard deviation: 9.02), which
is worse than the 97.9 for the GAPE used by Cohoon et al., but only marginally5 so. With a
wirelength weight of 1 the cost of the ideal solution is known to be 64.

Additionally a random walk was executed by running the GA with a selection pressure of zero and
all other parameters as above (so that mutation and crossover still operated as normal, but there was
no selection at all). The mean cost of solutions found by the random walk was 142 (standard
deviation 10.2). The GA performs significantly better than a random walk (p<0.0005)6.

In many of the GA runs, the best solution was found close to the end, hinting that the limit of 2560
generations may be stopping the GA before it has finished optimising. To test this, another batch of
100 tests were run with the same parameters, except that the stopping criterion was changed to
continue until 1000 generations had passed without improving on the best fitness. In these
conditions, the average cost of solutions found was 92.3 (standard deviation 4.33), and the average
run length was 3570 generations (357,000 evaluations). The standard deviation of the run length
was 2100, which shows that the number of generations required is far from constant, so choosing a
fixed number of generations to run for must waste time in runs that quickly find a good solution,
and stop the search early in those that search more gradually. Because this more flexible stopping
criterion allowed the GA to find better quality solutions, it was used for subsequent experiments.

4.3. Performance on randomly generated data
4.3.1. A note on measuring the speed with which a GA finds a solution
It can be difficult to compare the speed with which different published algorithms find solutions to
the same problem, because there is a range of different, and non-equivalent, ways to report this
information. Studies that report the actual run time of their algorithm can not be compared to each
other, because computer speeds vary dramatically, and the performance of two versions of the same
algorithm can be radically changed by details of the implementation. For this reason it is more
useful to report the number of times a standard set of steps have to be repeated. GA results are often
reported in terms of the number of generations required to find a solution, but this is also not a
useful measure, because the amount of computation required per generation is proportional to the
population size.

The clearest way to report the speed of a GA is to report the number of fitness evaluations carried out
for each run. This is because the calculation of solution cost will have to be carried out for every
potential solution evaluated by any algorithm, so the number of times this operation must be
repeated provides a measure that can be meaningfully compared between different algorithms.

4 The calculation of the number of evaluations is not explicit in [4], but they detail that the GAPE was run for 16 epochs of 50
generations each, using 4 subpopulations of 80 individuals each, giving 16 * 50 * 4 * 80 = 256000 evaluations. The GA
presented here was run with a population of 100, so 256000 evaluations will require 2560 generations.

5 It was not possible to test the significance of this difference, because [4] only lists the mean cost, and gives no information
about the distribution of results.

6 t = 10.61 in a paired t test.

~ 19 ~

Eldan Goldenberg Automatic layout of variable-content print data

4.3.2. Results from random data
With the parameters as set out in sections 4.1 and 4.2, the GA was performance-tested using a
collection of datasets, randomly generated using the ranges of values for A, r and s as described in
Table 3. The wirelength weighting for all of these tests was set to zero, making them purely a test of
how compact a layout the algorithm could find. The effect of wirelength will be revisited in Section
6.2. The average performance of 10 runs for each dataset is summarised by the graphs below, and
listed in full in Appendix A. Figure 9 shows the mean number of evaluations taken for the GA to
find a solution for each dataset size, and Figure 10 shows the proportion of the best layout for each
dataset that was taken up by whitespace:

The relationship between dataset size and solution speed

0

50000

100000

150000

200000

250000

300000

350000

0 5 10 15 20 25 30 35 40
Number of modules

N
um

be
r o

f e
va

lu
at

io
ns

 re
qu

ire
d

Figure 9: the speed of the GA

~ 20 ~

Eldan Goldenberg Automatic layout of variable-content print data

The relationship between dataset size and packing efficiency

0%

5%

10%

15%

20%

25%

0 5 10 15 20 25 30 35 40
number of modules

pr
op

or
tio

n
of

 to
ta

l a
re

a
ta

ke
n

by
 w

hi
te

sp
ac

e

fFigure 10: the packing ef iciency of solutions found by the GA

The first two data points on both of the graphs above are special cases, because for 4 and 5 modules
the GA consistently found global optima (as corroborated by exhaustive search). The global optima
for 6 and 7 modules were found by some, but not all, GA runs, and for more than 7 modules the
global optima are not known (for reasons that will be explained in Section 5).

Figure 9 clearly shows that the number of evaluations run (using the ‘end when there has been no
improvement after 1000 generations’ stopping criterion) increases with the number of modules to be
placed, as to be expected given that the search space increases in size as well. However the increase
in the number of evaluations required appears to be close to linear, as opposed to the exponential
growth of the search space itself. This will be considered in more depth in Section 5.

Figure 10 shows that the packing efficiency of the best solution found decreases as the number of
modules to be placed increases. The impracticality of computing global optima for this data makes it
impossible to be certain whether this is due to the optimal packing being less efficient for more
modules, or to the GA finding solutions that fall further short of optimal. That the GA is finding
suboptimal solutions is a more likely explanation, because the variance in the area of solutions found
increases linearly with the number of modules to be placed, as illustrated by Figure 11:

~ 21 ~

Eldan Goldenberg Automatic layout of variable-content print data

Consistency of GA results

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

0 5 10 15 20 25 30 35 40
Number of modules

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n
of

 s
ol

ut
io

n
ar

ea

Figure 11: The increase in variance of GA solution quality w th the number of modules to be placedi

The increasing variance of solutions found for increasing numbers of modules implies that the mean
area must be diverging further from the global optimum. However, it is not important that a GA
necessarily find optimal solutions, as long as it finds good solutions. Section 6 will consider the
aesthetic quality of layouts found by this GA.

4.4. Summary
Section 4 listed the parameter settings used for my implementation of the GAPE, described the test
datasets, and considered the speed of the GA. It was found to perform very similarly to Cohoon et
al.’s original implementation [4] on the data that could be replicated, in spite of only incorporating
two of their three crossover operators, and considerably better than a random walk. For random
data the relationship between dataset size and time to find a solution is close to linear, as contrasted
with the exponential growth in the search space. The layouts produced by the GA become less
parsimonious as the dataset increases in size, but Section 6 will consider whether the aesthetic
quality of layouts decreases unacceptably.

~ 22 ~

Eldan Goldenberg Automatic layout of variable-content print data

5. The size of the search space
As reported in Section 2.3, bin packing problems in general are NP-hard, so the search space can be
expected to grow exponentially as the number of items to be placed increases linearly. The
characteristics of the search space for the specific problem of finding guillotineable layouts for n
objects are as follows:

• n objects require n-1 cuts, or operators in Polish postfix notation, so the Polish expression to
describe the layout of n objects has 2n-1 characters.

• Each of those characters can be one of n module numbers, giving n+2 possible values in total.

• Therefore the total number of possible permutations of the character string is (n+2)2n-1. Of these,
the majority will not be well-formed Polish expressions.

• The number of well-formed Polish expressions (P) can be derived from the series7 Pi+1=4Pi(2i-1),
where P2 = 4.

An exhaustive search program was written to find global optima for those datasets that were
searchable in the amount of time available, and to confirm the explosive growth of the search space
as the number of objects to be placed increases. The exhaustive searcher has to step through many
of the lexical permutations, but a proportion of these were cut out by some simple heuristics.
Because the first and last well-formed Polish expressions that will be checked are easy to work out
(for example, the search will run from 0123*** to 32+1+0+ for n=4), only the permutations from
one to the other need be examined, cutting out a significant number of evaluations, as shown in
Figure 12:

7 This series was derived empirically, and it is a perfect fit to the known data for 2-7 objects.

~ 23 ~

Eldan Goldenberg Automatic layout of variable-content print data

Search space growth

1

10

100

1000

10000

100000

1E+06

1E+07

1E+08

1E+09

1E+10

1E+11

1E+12

1E+13

2 3 4 5 6 7
number of objects to be placed

nu
m

be
r o

f …

Lexical permutations

Permutations checked by the exhaustive search

Well-formed Polish expressions

Unique slicing structures

Figure 12: the combinatorial explosion in the search space

As Figure 12 shows, however, the search space is still very large. Running the exhaustive search for
7 objects took approximately 9 hours on a 1.8 GHz Pentium IV, and because the number of strings
checked by the exhaustive search increases by more than two orders of magnitude when the
problem is expanded by 1 object, it is clear that exhaustively searching the solution space for more
than 7 objects is not practical.

The number of evaluations required for the GA to reach a high quality solution (equal to the global
optimum for up to 6 objects) does not increase exponentially. For very small numbers of objects
(n<7) the GA is not much more efficient than the exhaustive search, but time required increases at a
far lower rate than the size of the search space, so for larger numbers of objects (n>6) the GA is
considerably more efficient. The number of evaluations used by the GA is compared to the size of the
search space in Figure 13:

~ 24 ~

Eldan Goldenberg Automatic layout of variable-content print data

GA performance compared to exhaustive search

1

100000

1E+10

1E+15

1E+20

1E+25

1E+30

1E+35

1E+40

1E+45

1E+50

1E+55

1E+60

1E+65

1E+70

1E+75

1E+80

1E+85

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
number of modules

nu
m

be
r o

f …

Well-formed Polish expressions

Genetic Algorithm evaluations

Figure 13: the performance of the GA relative to the size of the search space8

Figure 13 clearly demonstrates that the GA continues to be a practical method for tackling this
problem with dataset sizes for which an exhaustive search is intractable. On the other hand, the
imprecise stopping criterion adds an overhead that makes the GA slower than exhaustive search for
the very smallest problems, where n<6.

8 Note that this graph plots the number of evaluations taken to find the eventual best solution for each run. The GA actually
runs for 1000 generations after finding its optimum, because there is no theoretical way for it to check that it has finished
searching.

~ 25 ~

Eldan Goldenberg Automatic layout of variable-content print data

6. Evaluating the GA in the print context
The GA described in Sections 3-5 is a close replication of a system for producing VLSI floorplans,
chosen (as explained in Section 3.1) for its close analogy to the problem of laying out documents.
The remainder of this report will consider the aesthetic quality of layouts produced, and consider
extensions to the GA with specific relevance to producing print layouts. Section 6.1 will present and
discuss images of the layouts produced by the GA, Section 6.2 will consider ways of making layouts
conform to aspect ratio constraints, and Section 6.3 will describe an attempt at grouping items
together.

The images used in this section all have their aspect ratios preserved, but the graphics are not to the
same scale as each other. The position of objects in these layouts is also not entirely specified by the
GA; as explained in Section 3.2.2, only the details of the rectangle that contains each object are
known. The graphics were all produced on the assumption that each object will have the aspect
ratio closest to that of its containing rectangle among those possible for its position and constraints,
and will be centred in its container. Section 7 will consider how more sophisticated placement
strategies could improve results.

6.1. Aesthetic quality of layouts produced by the GA
As discussed in Section 4.3, the proportion of whitespace in layouts found by the GA increases as the
number of objects to be placed is increased (Figure 10), and it seems likely that this is due to the GA
converging on suboptimal packings. However, it is not necessarily important for the GA to find the
most space-efficient layout for a given set of objects, as long as the result is a good quality layout.
This is a subjective criterion that can not be judged by looking at measures of area alone, so this
section will present images of the actual layouts produced.

Figure 14 is a globally optimal9 layout for the 7 module dataset, which is found by some but not all
GA runs:

Figure 14: The most parsimonious layout possible for the 7 module dataset

This is the dataset for which the GA finds layouts with the least whitespace. It is not necessarily
ideal to lay a document out with this small an amount of whitespace – certainly if the 7 objects were
sections of text some space would have to be inserted to make the document readable – but by
removing large clumps of whitespace the GA has produced a layout that would be easy to ‘finish’
automatically. The merits of possible strategies for adding whitespace will be discussed in Section 7,
but it is clear from Figure 14 that a very simple strategy could distribute whitespace evenly between

9 It is never the case that there is only one globally optimal layout for a given dataset, because there will always be at least
one pair of modules (the first two operands in the Polish expression) that can be swapped without changing the area. In this
example, switching module 1 with module 6, module 5 with module2, or module 4 with module 0 will not change the area.

~ 26 ~

Eldan Goldenberg Automatic layout of variable-content print data

all of the objects with good results. In contrast, there is no way to distribute whitespace evenly for
the randomly generated layout in Figure 15 (below) without re-ordering the objects themselves:

,

Figure 15: The most parsimonious of the 100 randomly generated layouts for the first generation of a GA run for the same 7

module dataset as Figure 14

The large clumps of whitespace in this unoptimised layout would make it impossible to use the same
simple algorithm to distribute the space evenly around a printed page as would work for Figure 14.

For the GA to be useful, it is important that it can find appealing layouts for a range of datasets, not
just the simplest cases. Figure 16 shows results for 18 and 24 objects:

Figu e 16a: a GA-generated layou for the 18 module dataser t t

 t
Figure 16b: a GA-generated layout for the 24

 module datase

Although these layouts are not as parsimonious as that for the 7 module instance, the GA has still
managed to produce visually appealing layouts in both of these cases: It is striking that in both of

~ 27 ~

Eldan Goldenberg Automatic layout of variable-content print data

these cases a roughly columnar layout has appeared, but this is not specified anywhere as a goal of
the GA. The GA simply optimises a cost function that seeks to minimise the total area required for
the layout, and this arrangement into columns has emerged as a by-product of the algorithm.
Columnar layouts are not necessarily produced by this GA, but very often the layout produced will
either be divided into columns or rows (and Section 7.1 will consider the factors that determine
whether rows or columns are likely), as in the layout shown in Figure 17, which is the result of
another run of the GA on the same 18 module dataset as depicted in Figure 16b:

r r Figu e 17: a second GA-generated layout for the same 18 module dataset as depicted in Figu e 16b

As explained in Section 2.2.2.4, many common layout styles, including multiple-column pages, are
guillotineable. The GA presented here looks exclusively at slicing layouts, which by definition are
also guillotineable, which seems to have the side-effect of biasing the search towards layouts with
multiple straight cuts across the page. This is convenient because such layouts are visually more
coherent than layouts with less visible structure.

The GA does not, however, produce infallibly good results. The following two examples will show
conditions in which it fails to produce visually pleasing layouts. Figure 18 shows the most
parsimonious layout produced for the 35 module dataset, which was the dataset for which the GA
found the least parsimonious layouts (as shown by Figure 10):

~ 28 ~

Eldan Goldenberg Automatic layout of variable-content print data

Figure 18: the best layout for the 35 module dataset

As Figures 10 & 11 in Section 4.3.2 show, the performance of the GA, both in terms of the space-
efficiency of the best layout found, and the consistency with which it finds good layouts, decreases as
the number of objects to be placed increases. A simple solution to this could be to divide both the
dataset and the page, letting the GA lay out each (for example) half page with half of the objects.

However, it is also possible for the GA to produce ugly layouts for simpler datasets as well, because
the cost function is an imperfect measure of aesthetic appeal. Figure 19 shows an example layout
for 12 objects, which has a low cost because it has little whitespace, but looks unappealing because
the GA has found a solution with an extreme aspect ratio:

Figure 19: an efficient but unattractive layout for the 12 module dataset

Aspect ratio is not only a contributing factor in aesthetic appeal, it is also often a known constant for
print layouts, so Section 6.2 considers ways of controlling the aspect ratio of layouts produced by the
GA.

6.2. Controlling the aspect ratio
Because VLSI floorplans typically do not have to be restricted to a precise aspect ratio, Cohoon et al.
[4] allowed the aspect ratio of their floorplans to vary between user-set extremes, usually 0.5 and 2.
The results presented so far in this paper do not feature any aspect ratios constraints at all, but the
aspect ratio will almost certainly have to be constrained for any real print layout.

In the context of producing printed pages, the aspect ratio of the page is known in advance, and any
significant deviation from this aspect ratio will result in a large, ugly block of wasted space, not to
mention extreme cases like the layout in Figure 19. To remedy this, various methods were tested for
making the GA find solutions with an aspect ratio close to a value chosen by the user, with varying
degrees of success.

~ 29 ~

Eldan Goldenberg Automatic layout of variable-content print data

6.2.1. Incorporating the aspect ratio into the cost function
As outlined in Section 3.2.2.3, the cost function for the GA is simply A + λW, where A is the area of
the smallest rectangle required to contain a layout, W is the total wirelength of connections between
modules, and λ is a user-specified parameter to balance the two terms. For all of the data illustrated
in Section 6.1 λ was set to 0, so in effect the cost of a layout was simply the area (A) of its
container.

As a first attempt at constraining the aspect ratio of layouts found by the GA, the cost evaluation
was changed to measure the area of the smallest rectangle of the des red proportions that could
contain the layout produced, as illustrated in Figure 20:

i

Figure 20: an example of the penalty added to a layout of aspect ratio 1, if the de ired aspec ra io was 0.71 s t t

This was tested with an aspect ratio of 1/ 2 , which is the aspect ratio of the DIN An series of paper
sizes, in portrait alignment, and a common ratio for printed documents. The results tended to look
clumsy, as illustrated in Figure 21:

Figure 21: A layout for the same 24 module dataset as in Figure15b, generated by the GA with the aspect ratio incorporated

into the cost function

Not only is this layout ugly and inefficient, but its aspect ratio (0.62) also is not very close to the
desired ratio (1/ 2 = 0.71). It is also easy to see a simple change that would reduce the area
noticeably – moving module 10 into the space on one side of module 9 – and yet the GA did not
discover this change even though it ran for 1000 generations (100,000 evaluations) after first
discovering this layout. It is possible that this exact change required a series of mutations to the
genotype, but there is certainly an area-reducing change that could be produced by a single
mutation – changing the slice between 10 and the rest of the objects from a vertical slice to a
horizontal one, which only requires one application of the M2 operator described in Section 3.2.3,

~ 30 ~

Eldan Goldenberg Automatic layout of variable-content print data

and yet this solution was also not found. This is because although moving module 10 in either way
would reduce the solution area, it would not reduce the cost as calculated here, because it would not
reduce the size of the smallest container of aspec ratio 0.71 that could contain the layout; in fact
changing the slice from vertical to horizontal would increa e the cost calculated in this way.

t
s

The layout shown in Figure 21 is typical of results with this version of the GA, so it seems likely that
the altered cost function has distorted the search space in a way which makes it difficult for the GA
to find high quality solutions. Section 6.2.2 describes a slightly different approach to the same
problem.

6.2.2. Incorporating the aspect ratio into the area calculation
Instead of simply assigning an area to a layout oblivious to aspect ratio constraints, and then
penalising solutions that diverge from the desired aspect ratio, the second attempt at controlling
aspect ratio incorporated the aspect ratio constraint directly into the area calculation. As described
in Section 3.2.2.1, the computation of area actually involves choosing a point from a bounding
curve for the layout, which contains every combination of width and height that can contain the
layout as specified. Instead of simply choosing the width & height pair with the lowest product (and
therefore smallest area), the algorithm was modified to choose the width & height pair that fit into
the smallest container of the desired aspect ratio. The penalty term was removed from the cost
function, because this version of the algorithm will always produce a result with the desired aspect
ratio, so the penalty term became redundant. Figure 22 illustrates how this version of the algorithm
chooses dimensions from a bounding curve:

0

1

2

3

0 1 2 3

width

he
ig

ht

s t r if

i t

i

Figure 22: area computation taking aspect ratio constraint into account. If no aspect ra io we e spec ied, the algorithm
would choose dimensions along e ther of the dashed lines, giving an area of 2 and an aspect ra io of 0.5 or 2. If an aspect

ratio of 1 is specified, the algorithm must instead choose the point where the straight line crosses the bounding curve, at (1.5,
1.5), g ving an area of 2.25

A typical result from this version of the algorithm, using the same 24 module dataset as in Figure
21, is shown in Figure 23:

~ 31 ~

Eldan Goldenberg Automatic layout of variable-content print data

r t t Figu e 23: A layou for the same 24 module dataset as in Figures 21 & 16b, this time generated by the GA with the aspec

ratio constraint as part of the area computation

Although the results with this version of the algorithm are less parsimonious than with no aspect
ratio constraints (as illustrated in Figure 16b), they do represent an improvement over the version
described in Section 6.2.1. The aspect ratio is very close to that desired, at 0.70 when the desired
ratio was 0.71, and the whitespace is more evenly balanced. This is typical of layouts produced by
this modification to the algorithm, but still represents a decrease in quality from the layouts shown
in Section 6.2.1, without aspect ratio constraints.

Section 6.2.3 presents a refinement to the aspect ratio constraint, by letting the user specify how
strictly the constraint should be applied.

6.2.3. Allowing relaxation of the aspect ratio constraints
Although control over the aspect ratio of layouts is important to keeping the results attractive, this
need not entail an absolutely rigid constraint. Documents printed on the same size paper have a
variety of margin sizes, and slight unevenness in aspect ratio can be compensated for by adding
different amounts of space between objects. Exactly how rigidly the aspect ratio has to be specified
will also probably vary from document to document; if a single page document is being prepared it
may be allowed more flexibility than if a selection of pages will be bound together, because the pages
of a larger document must match each other.

To allow user control over this, two parameters were added to the cost evaluation. A weight could
be selected to determine the relative importance of the aspect ratio penalty term, and a range could
be specified as a percentage deviation from the ideal aspect ratio for which solutions would not be
penalised at all. The new cost function was therefore:

cost = A + λW + kP

Where k is the user-specified weight and P is the penalty term, calculated as the difference in area
between the layout itself and the smallest rectangle within the specified range of aspect ratios that
could contain the layout. In effect, setting k to zero is equivalent to removing the aspect ratio
constraint altogether, and setting k to 1 and the allowed range to zero is equivalent to the cost
function used in Section 6.2.2.

Experiments with a range of values for these new parameters found that varying the range gives
more fine-grained control over the layouts produced than varying the weight, as illustrated by Figure
24:

~ 32 ~

Eldan Goldenberg Automatic layout of variable-content print data

i .

Figure 24a: a layout produced with an
aspect ratio weight ng of 0 5, and an

actual aspect ratio of 0.72

Figure 24b: a layout produced with an
aspect ra io range of ± 10%, and an

actual aspect ra io of 0.71

t

t

t

Figure 24c: a layout produced with
an aspect ratio range of ± 20%,

and an actual aspect ra io of 0.62

As these examples show, there is a trade-off between achieving tight control over aspect ratio and
producing a parsimonious layout. This gives a user of the system a helpful level of control over the
sort of layouts produced, by allowing them to choose exactly how to balance the compromise
between these two objectives.

6.3. Grouping items together
So far the GA has simply treated each print object as a box, regardless of its contents. In a real print
context, it is highly unlikely that simply placing items in an arbitrary order will produce useful
output, for instance in a catalogue there is often a picture, a tagline and a body of text all describing
the same product, which must all be placed together to make sense. The concept of wirelength from
the VLSI context (as described in Section 3.2.1) was adapted to organise items into groups, as
outlined in this section.

In the original VLSI placement algorithms reported by Wong & Liu [24] and Cohoon et al. [25],
modules could be connected to each other by variable strength connections, to represent the wiring
between them, but the layouts produced so far have simply been produced with λ (the wirelength
weight) set to zero, thus ignoring any connections between modules. Group membership was
indicated by setting the connection strength between members of a group to 1, and the connection
strength between modules in different groups to zero. Setting λ in the cost function could therefore
determine the relative importance of keeping groups together and of minimising layout area.

6.3.1. Division into two groups
This was first tested with the 20 module dataset, divided into 2 groups, with modules 0-9 assigned to
one group, and 10-19 to the other. Figure 25 compares the effect of setting λ (which can now be
considered the grouping weight) to zero or 1:

~ 33 ~

Eldan Goldenberg Automatic layout of variable-content print data

Figure 25a: the 20 module dataset with λ=0 and area 259.9

 Figure 25b: the same 20 module
 dataset with λ=1 and area 313.7

These settings for λ represent extremes either side of a desirable balance. With the grouping weight
set to 0 it is not surprising that there is no evidence of grouping – any that did appear would be
solely coincidental – and with a weight of 1 the grouping is perfect, but the layout substantially less
efficient. A range of values for λ between 0 and 1 was tested, and 0.2 was found to provide the best
results, with reliable grouping and efficient packing; a typical layout is shown in Figure 26:

i Figure 26: the same 20 module dataset as in Figure 25, w th λ=0.2 and area 267.6

6.3.2. Division into more than two groups
The same paradigm was used to divide the 21 module dataset into three groups (0-6, 7-13 and 14-
20). This attempt was unsuccessful however, as it proved impossible to find a weighting that
balanced the requirements of both grouping and area reduction. As Figure 27 illustrates, even with
λ=1 the grouping is imperfect, and the packing is highly inefficient when grouping is given that high
a weighting:

~ 34 ~

Eldan Goldenberg Automatic layout of variable-content print data

i f

r

Figure 27: with 3 groups it becomes impossible to achieve reliable grouping w thout sacrificing layout ef iciency

Although automatic grouping in this way fails for more than 2 groups, it is worth remembering that
the GA performs well with small datasets. Therefore grouping could also be achieved by dividing the
page a prio i into regions, and then applying the GA separately to the objects to be placed in each
region. This has the drawback (compared with automatic grouping) of not allowing flexible division
of the page (as in the example of Figure 26), but it will generalise to larger numbers of groups.

6.4. Summary
Section 6 has presented visual representations of the layouts produced by the GA, to demonstrate
that the simple heuristic of favouring layouts with minimal whitespace does tend to produce
aesthetically pleasing layouts. It also described two extensions to the basic algorithm, to allow the
user to control the aspect ratio of generated layouts, and to automatically divide the layout into two
groups. An attempt to divide the layout into more than two groups was also described, but this was
unsuccessful.

~ 35 ~

Eldan Goldenberg Automatic layout of variable-content print data

7. Discussion & further extensions
This section will consider the conditions under which the GA described above can be expected to be a
useful layout tool, and the further work that will be required to make this into a complete layout
generation system.

7.1. Constraints on the selection of objects
Although this study has looked at layout generation in isolation, selection and layout of print objects
are not independent problems. As suggested in Section 2.2.3, the nature of the objects that have
been selected will impact upon the quality of layouts that can be generated. All of the test data
illustrated in Section 6 had similar random ranges of area and aspect ratio, but experience with this
random data does provide some insight into the sort of objects that should be provided for the layout
engine to work well. Sets of objects that fit the following criteria are likely to be laid out more
attractively by this GA than sets that do not:

• Between 10 and 30 items, because with too many the GA becomes less good at finding
parsimonious layouts (see Section 4.3), but with too few even a very space-efficient layout will
not look as good as for numbers within this range (as in the 7 module example in Section 6.1)

• If the aspect ratios are fixed then giving several modules the same width will encourage
columnar layouts, and giving several modules the same height will encourage layouts in rows

• If the aspect ratios are variable then they should allow enough flexibility for modules to have the
possibility of matching each others’ widths or heights, as this too will encourage layouts in
columns or rows respectively

• The total area of the objects to be placed must be less than the area of the page, because for data
that has any irregularities at all the optimal packings still incorporate some whitespace.
However, the total area of objects must also not be too small, because then the layout produced
would be smaller than the page.

If a large (>30) number of items must be placed, dividing both the page and the dataset into
subgroups is likely to yield better results than simply trying to place the whole large group
simultaneously. This division could in itself be informed by the requirements listed above; for
example if 20 objects out of a set of 40 all have a similar width, they could be placed in one half of
the page, thereby increasing the likely quality of the layout.

7.2. Strategies for adding whitespace
Whitespace is an important element of graphic design. As alluded to in Section 6.1, the most
attractive looking pages are not the most densely packed, yet the GA as described here aims to
minimise the whitespace on the page. This is a productive approach, however, because by
minimising whitespace large gaps are generally removed, leaving an even distribution that could be
‘finished’ by simple heuristics. Once the uneven distribution of whitespace has been removed by the
GA, simply adding space distributed evenly between all of the objects will usually produce
aesthetically pleasing results.

It is also important to consider the placement of modules within their containers in the slicing
structure. So far they have simply been centred, but a more sophisticated heuristic would improve
the aesthetics of the page. An effective method would have to consider the balancing of whitespace
and the creation of straight lines down and/or across the page, both of which are constraints to
which most documents laid out by human paste-up artists conform.

A good strategy for adding whitespace can also help to fit GA-generated layouts to the aspect ratio
required. As discussed in Section 6.2, the GA can work with aspect ratio constraints, but it produces
far better results if there is some flexibility in the aspect ratio of the layout. If a layout diverges
slightly from its desired aspect ratio this could be fixed by adding different amounts of space across
the two dimensions; for example if a layout is slightly narrower than the page more space could be
added horizontally between objects than vertically.

~ 36 ~

Eldan Goldenberg Automatic layout of variable-content print data

7.3. Taking account of content
The GA as described so far does not take account of what is actually contained within each print
object, simply treating each item as a ‘black box’ with certain constraints on its shape. The system
would be improved by taking the actual content of each object into account.

A simple consideration would be that changing the aspect ratio of images seldom makes sense,
because although it might improve the overall appearance of the page it will usually make the image
itself look odd. Instead, upper and lower bounds for the area of images could be set, with the aspect
ratio being fixed.

For a more complex extension, word wrapping could be worked out for objects that contain text.
The heuristic used thus far – that the area of an object must remain constant and its aspect ratio is
continuously variable – is only an approximation of what really happens if a text box is resized. The
increase in length of a column of text is only roughly proportional to a decrease in width that causes
it, because shortening a line will not necessarily cause it to wrap earlier.

For example, Figure 28 plots the length of a sample paragraph of text as a function of its width:

200 400 600 800 1000 1200
Column Width

50

100

150

200

250

hpargaraP
htpeD

Figure 28: changing the width of a text box does not always increase its height (diagram produced by John Lumley of HP

Labs, Bristol)

There is no simple way to model this accurately without processing the actual text within each box,
so for accurate results the program would have to be given the contents of each box as part of its
input. There is a risk, however, that doing this would slow the system down to the point of
uselessness, because it adds so much complexity to each fitness evaluation, so it would be important
to monitor the effect of this on system speed. It may well be possible to find an approximation
method that is close enough to the detailed case to work, but less computationally costly, just as
using a first-order approximation of modules’ bounding curves (as outlined in Section 3.2.2.1) in this
work has proved accurate enough to find good results.

7.4. Summary
The GA described in this report is best seen as achieving part of the task of automating document
layout. This section has described ways in which the system could be made more complete by
adding a method for selection of objects that helps the GA to produce attractive layouts, finishing the
layouts attractively by the use of carefully chosen heuristics to add whitespace, and making the data
more realistic by considering the actual content of print objects.

~ 37 ~

Eldan Goldenberg Automatic layout of variable-content print data

8. Conclusion
The work presented here has demonstrated that automatically generating aesthetically pleasing page
layouts is possible, and that Genetic Algorithms are a useful approach to this task. The page layout
problem has enough in common with the better-studied problem of VLSI floorplanning that
techniques can be usefully adapted, but modifications to floorplanning algorithms, as tested here, can
increase the utility of the system by taking into account concerns specific to the domain of producing
printed layouts.

While the area consideration in VLSI floorplanning is simply to minimise the area of a rectangular
container into which a circuit must fit, a page layout algorithm must aim to improve the subjective
quality of the layout of a selection of objects on a page of known fixed dimensions. Quality is a
subjective assessment, which is difficult to encapsulate in an objective cost function, but the simple
heuristic used here has proved able to generate attractive layouts reliably.

The only explicit goal of the GA was to minimise the wasted space between print objects, but as the
selection of layouts illustrated in Section 6 show, this is enough to produce aesthetically pleasing
output. The relatively even distribution of whitespace, which is in itself desirable, is clearly a direct
effect of the requirement to minimise whitespace, but the tendency to arrange items roughly into
rows or columns is a more surprising effect. It is clearly a beneficial side-effect, because the
arrangement of items into straight lines across a page gives it a degree of visual unity that is
attractive, and the self-organisation into rows or columns presents great advantages over an explicit
division of the page by increasing the flexibility of the results. The structures that emerge from this
layout method, as compared with pre-set rows or columns, are able to adapt to the size of the
contents, and the freedom to dynamically change the number of rows or columns (as, for example,
in Figure 16) allows a wider range of data to fit than a rigid structure would.

The extensions from a simple whitespace-reducing algorithm bring the GA closer to being a complete
page-layout system. While a VLSI designer need only worry about keeping the floorplan within a
broad range, a print designer has to produce a layout knowing in advance what size media it will be
printed onto. The addition of aspect ratio constraints to the cost evaluation allows a potential user of
this system to simply let the program deal with this part of the problem, adding more automation.
The ability to arrange items into groups automatically and flexibly, meanwhile, increases the
meaningfulness of documents prepared in this way, which could easily be garbled if closely related
items are placed far apart. It is significant, however, that the addition of these extra constraints
introduces a trade-off between them, because it is highly unlikely that the layout with minimal
whitespace will happen to also fit the desired aspect ratio perfectly and provide good semantic
grouping. The GA presented above allows the user to specify the relative importance of these three
goals, which may well vary according to the specific type of document being produced.

The performance of the GA does deteriorate if there are too many objects to be placed, or if a division
into more than two groups is attempted. However, this is easily worked around by simply dividing
the page up into smaller areas, each of which contains a small enough number of items in no more
than two groups.

The quality of layout produced by this system does seem to be related to the type and quantity of
objects being placed. For instance, if a document consists of a small number of items of rigidly fixed
dimensions, none of which match each other, any possible layout (whether found by the GA or
another method) will inevitably look messy, with an uneven distribution of content and whitespace
and no structure. On the other hand, layouts of high quality are produced if the selection of items to
be placed fits the broad guidelines in Section 7.1 – having some range of flexibility of aspect ratio,
some regularity of dimensions, and a total area which is smaller than that of the page but not too
small – and further development as suggested in Sections 7.2 & 7.3 should improve the aesthetics of
generated layouts and increase the range of document types for which this system works well.

The hardware required for commercial custom printing already exists, but at present documents
must either be designed by skilled professionals or by fitting highly constrained information into
templates; the ability to use software to automatically and flexibly generate customised pages will
allow such hardware to be used to its full potential.

~ 38 ~

Eldan Goldenberg Automatic layout of variable-content print data

References
[1] Amazon.com inc. (2002). Your Recommenda ons. Only available online: ti

http://www.amazon.co.uk/exec/obidos/tg/stores/browse/-/help/924452/026-5848469-2310813

[2] Borning, A., Lin, R. K-H., & Marriott, K. (2000). Cons raint Based Document Layout for the
Web. Multimedia Systems, 8:177-189. Available online:

t -

http://www.cs.washington.edu/research/constraints/web/mmJournal.html

[3] Canon Inc. (2002). Card Photo Printer CP 10. Only available online: -
http://www.canon.co.jp/Imaging/CP10/CP10_3-e.html

[4] Cohoon, J. P., Hegde, S. U., Martin, W. N. & Richards, S. (1988). Floorplan design us ng
dis r bu ed Gene ic A go hms. IEEE National Aerospace and Electronics Conference (NAE-
CON 88), Santa Clara CA, pp488-491.

i
t i t t l rit

i
i

[5] Csirik, J., Johnson, D. S., Kenyon, C., Shor, P. W. & Weber, R. R. (1999). A Self Organiz ng
Bin Pack ng Heuristic. Workshop on Algorithm Engineering and Experimentation (ALENEX
‘99), Baltimore, MD, pp246-265. Available online:
http://citeseer.nj.nec.com/csirik99self.html

[6] Dyckhoff, H. (1990). A typology of cutting and pack ng problems European Journal of
Operational Research, 44:145-159.

i .

t
tt t .

[7] Elmaghraby, A. S., Abdelhafiz, E. & Hassan, M. F. (2000). An intelligen approach to stock
cu ing op imization University of Louisville Multimedia Research Lab, Louisville, KY.
Available online:
http://www.louisville.edu/speed/emacs/mrl/publications/pdffolder/caine00_ehab.pdf

[8] Geigel, J., & Loui, A. C. (2002). Automatic page layout using genetic algorithms for
electronic a buming. Proceedings of The International Society for Optical Engineering
4311:79-90. Available online:

l

http://www.jogle.com/Research/publications/spieFinal.pdf

[9] Goldberg, D. E. (1989). Genetic Algorithms in Sea ch, Optimization and Mach ne Learn ng.
Addison Wesley, Boston, MA.

r i i

i l[10] Holland, J. H. (1975). Adaptation in Natural and Artific a Systems. University of Michigan
Press, Ann Arbor, MI.

[11] Jayaram, V. (2002). Photo Paper Saver v1.5.3.7. Only available online:
http://www.fpdoctor.com/pps/main/main-j-0-0.html

[12] Kahng, A. B. (2000). Classical Floorplann ng Harmful? ACM/IEEE International Symposium
on Physical Design, San Diego, CA, pp207-213. Available online:

i

http://citeseer.nj.nec.com/kahng00classical.html

[13] Kodak Limited. (2001). Kodak Releases New Software For EasyShare Dig tal Cameras Only
available online:

i .
http://www.kodak.co.uk/UK/en/corp/press/archive/2001/20010801.shtml

[14] Laakso, J., Jäntti, R., Rinne, M., & Salonaho, O. (1998). Radio Resource Knapsack Pack ng
For WCDMA Air Interface. 9th IEEE Symposium on Personal, Indoor and Mobile Radio
Communications, 1: 183-187.

i

i i[15] Lieberman, H. (1995). The Visual Language of Experts in Graph c Des gn. IEEE Symposium
on Visual Languages, Darmstadt, Germany. Available online:
http://lieber.www.media.mit.edu/people/lieber/Lieberary/Graphic-Design/Expert-Design/

[16] Mani, N., & Srinivasan, B. (1997). Using Genetic Algorithm for Slic ng Floorplan Area
Optimization in Circuit Design. IEEE Conference on Systems, Men & Cybernetics, Orlando, FL,
3:2888-2892.

i

~ 39 ~

http://www.amazon.co.uk/exec/obidos/tg/stores/browse/-/help/924452/026-5848469-2310813
http://www.cs.washington.edu/research/constraints/web/mmJournal.html
http://www.canon.co.jp/Imaging/CP10/CP10_3-e.html
http://citeseer.nj.nec.com/csirik99self.html
http://www.louisville.edu/speed/emacs/mrl/publications/pdffolder/caine00_ehab.pdf
http://www.fpdoctor.com/pps/main/main-j-0-0.html
http://citeseer.nj.nec.com/kahng00classical.html
http://www.kodak.co.uk/UK/en/corp/press/archive/2001/20010801.shtml

Eldan Goldenberg Automatic layout of variable-content print data

[17] Martello, S., Pisinger, D., & Vigo, D. (1997). The Three-Dimens onal Bin Packing Problem.
University of Bologna Technical Report DEIS-OR-97-6. Available online:

i

http://citeseer.nj.nec.com/133900.html

[18] Newhouse, N. (2001). Practical CSS Layout Tips, Tricks & Techniques. A List Apart, issue
119. Only available online: http://www.alistapart.com/stories/practicalcss/

[19] Otten, R. H. J. M. (1982). Layout Structures. IEEE Large Scale Systems Symposium.

[20] Otten, R. H. J. M. (1983). Efficient Floorplan Optimization. International Conference on
Computer Design.

[21] Pimpawat, C., & Chaiyaratana, N. (2001). Using a co operative co-evolutionary genetic
algo hm to so ve a three dimensional conta ner load ng p oblem Congress on Evolutionary
Computation, Seoul, Republic of Korea, pp1197-1204. Available online:

-
rit l - i i r .

http://rcis.kmitnb.ac.th/publication/CEC2001%20-%20Container%20Loading.pdf

[22] Rebaudengo, M., & Sonza Reorda, M. (1996). GALLO: A Genetic Algorithm for Floorplan
Area Optimization. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 15:943-951. Available online:

http://www.cad.polito.it/FullDB/exact/gallo.html

[23] Sandnes, F. E., & Megson G. M. (1996). A Hybrid Genetic Algorithm Applied to Automatic
Parallel Controller Code Generation European Workshop on Real-Time Systems
(EURWRTS’96), L’Aquila, Italy.

.

t
t rit .

l

[24] Smith, J. E. & Fogarty, T. C. (1996). Self adaptation of mutation rates in a steady sta e
gene ic algo hm IEEE Conference on Evolutionary Computation, New York City, NY, pp318-
323.

[25] Tarasova, T. D., & Rozanova, L. F. (2000). Methods of Calculating Rational Using of Materia
Resources. Workshop on Computer Science and Information Technologies. Available online:
http://csit.ugatu.ac.ru/pdf_ed/v2_113-115.pdf

[26] Thompson, A. (2002). Notes on design through a tificia evolution: Opportunities and
algo hms pp17-26 in: Parmee, I. C. (ed.). Adap ive Compu ing in design and manu ac ure
(V). Springer-Verlag, Heidelberg, Germany. Available online:

r l
rit . t t f t

http://www.cogs.susx.ac.uk/users/adrianth/acdm2002/paper.pdf

[27] Kong Tianming, Hong Xianlong, & Qiao Changge. (1997). VEAP: Global Optimization ba ed
Effic ent Algorithm for VLSI Placement. Asia and South Pacific Design Automation
Conference (ASP-DAC’97), Chiba, Japan, pp277-280.

s
i

t i - [28] University of Washington Constraints Research Group. (2002). UW Cons ra nt Based
Systems. Only available online: http://www.cs.washington.edu/research/constraints/

[29] Wong, D. F., & Liu, C. L. (1986). A New Algorithm for Floorplan Des gn. 23i

,

rd IEEE Design
Automation Conference, Las Vegas, NV, pp101-107.

[30] World Wide Web Consortium. (1998). Cascading Style Sheets level 2. Only available online:
http://www.w3.org/TR/REC-CSS2/

[31] World Wide Web Consortium. (1998). Paged media. Only available online:
http://www.w3.org/TR/REC-CSS2/page.html

[32] Zitzler, E., & Thiele, L. (1998). Multiobjective Optimization Using Evolutionary Algorithms: A
Comparative Case Study. pp 292-301 in: Eiben, A. E., Bäck, T., Schoenhauer, M., & Schwefel,
H.-P. (eds.). Parallel Problem Solving from Nature. Springer-Verlag, Berlin, Germany.
Downloadable from: http://citeseer.nj.nec.com/zitzler98multiobjective.html

~ 40 ~

http://rcis.kmitnb.ac.th/publication/CEC2001 - Container Loading.pdf
http://www.cad.polito.it/FullDB/exact/gallo.html
http://csit.ugatu.ac.ru/pdf_ed/v2_113-115.pdf
http://www.cs.washington.edu/research/constraints/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/page.html
http://citeseer.nj.nec.com/zitzler98multiobjective.html

Eldan Goldenberg Automatic layout of variable-content print data

~ 41 ~

Appendix A: Table of results
The performance of the GA on random test data:

Number
of
modules

Mean area
of solution

Standard
deviation of
solution
area

Total area
of modules

Percentage
whitespace

Mean number
of evaluations
to find solution

Standard
deviation of
run length

4 34.36 0* 32.06 6.702% 230.0 176.7
5 46.41 0* 43.85 5.512% 2180 2348
6 57.06 0.4420 54.68 4.182% 60010 52059
7 91.36 0.4060 88.78 2.826% 89010 69776
8 73.81 1.216 69.77 5.480% 77160 43505
9 95.13 1.121 89.69 5.714% 51990 45424
10 88.32 1.847 81.97 7.193% 110540 109703
11 131.0 2.401 123.1 6.081% 130300 88730
12 102.3 2.401 95.55 6.618% 179890 77841
13 136.9 3.966 125.4 8.337% 136800 66019
14 137.6 5.485 122.5 10.99% 102710 63721
15 188.6 2.893 170.5 9.588% 114070 97993
16 188.9 5.110 174.0 7.835% 187190 188699
17 184.0 6.321 162.1 11.86% 146880 90977
18 202.9 6.208 183.4 9.636% 156790 74680
19 219.8 7.758 199.3 9.324% 167150 96996
20 271.3 10.52 237.6 12.41% 122950 89451
21 226.4 8.363 198.2 12.45% 121210 75714
22 290.5 9.932 252.2 13.19% 213490 192437
23 232.0 8.958 199.9 13.85% 217690 75036
24 304.4 8.991 263.2 13.51% 183530 120337
25 347.3 18.06 292.1 15.90% 209380 147108
26 352.3 13.53 304.2 13.66% 234410 183473
27 352.3 23.89 305.0 13.44% 298010 173599
28 354.4 17.36 293.9 17.05% 164730 112963
29 405.6 18.46 352.9 12.99% 218260 154094
30 419.0 24.53 348.2 16.91% 181270 103595
31 435.5 15.33 357.2 17.97% 226830 105926
32 425.2 17.40 359.7 15.41% 169410 86767
33 432.9 33.04 364.8 15.74% 251130 101700
34 381.4 15.29 319.2 16.31% 187330 70071
35 477.2 37.74 372.4 21.97% 206080 125963
36 464.1 35.38 369.5 20.38% 198850 85289
37 541.9 35.87 439.8 18.83% 284570 173051
38 525.2 32.82 418.0 20.41% 180780 67595
39 503.5 32.29 405.8 19.41% 258840 141277
40 471.5 30.25 380.0 19.41% 310810 99021
Entries marked with a * are those for which the GA is known to consistently find a globally optimal
solution. See Section 4.3.2 for a discussion of these results.

	Automatic layout of�variable-content print data
	Abstract
	Acknowledgements
	Contents
	1. Introduction
	Background
	Existing software
	Work on related problems
	Fitting websites into variable sized windows
	Bin packing problems
	One-dimensional bin packing
	Two-dimensional bin packing
	Three-dimensional bin packing
	Guillotineable packings
	Online bin packing

	Knapsack packing

	Techniques
	Genetic Algorithms
	‘Hybrid’ Genetic Algorithms
	Non-evolutionary approaches

	Summary

	The program
	Choice of approach
	Method of the original papers
	Problem representation
	Solution evaluation
	Area computation
	Wirelength computation
	The cost function

	Mutation and crossover operators
	Cohoon et al.’s parallel GA

	Technical details of the program
	3.4.Summary

	GA Results
	4.1.Parameter settings
	Comparison with known data
	Performance on randomly generated data
	4.3.1.A note on measuring the speed with which a GA finds a solution
	4.3.2.Results from random data

	Summary

	The size of the search space
	Evaluating the GA in the print context
	Aesthetic quality of layouts produced by the GA
	Controlling the aspect ratio
	Incorporating the aspect ratio into the cost function
	Incorporating the aspect ratio into the area calculation
	Allowing relaxation of the aspect ratio constraints

	Grouping items together
	Division into two groups
	Division into more than two groups

	Summary

	Discussion & further extensions
	Constraints on the selection of objects
	Strategies for adding whitespace
	Taking account of content
	Summary

	Conclusion
	References
	Appendix A: Table of results
	
	
	
	
	Mean area of solution

