Jump to content United States-English
HP.com Home Products and Services Support and Drivers Solutions How to Buy
» Contact HP

hp.com home

Technical Reports

printable version

HP Labs

» Research
» News and events
» Technical reports
» About HP Labs
» Careers @ HP Labs
» Worldwide sites
» Downloads
Content starts here

  Click here for full text: PDF

Choose Your Words Carefully: An Empirical Study of Feature Selection Metrics for Text Classification

Forman, George


Keyword(s): supervised machine learning; document categorization; support vector machines; binormal separation; residual failure analysis

Abstract: Good feature selection is essential for text classification to make it tractable for machine learning, and to improve classification performance. This study benchmarks the performance of twelve feature selection metrics across 229 text classification problems drawn from Reuters, OHSUMED, TREC, etc. using Support Vector Machines. The results are analyzed for various objectives. For best accuracy, F-measure or recall, the findings reveal an outstanding new feature selection metric, "Bi-Normal Separation" (BNS). For precision alone, however, Information Gain (IG) was superior. A new evaluation methodology is offered that focuses on the needs of the data mining practitioner who seeks to choose one or two metrics to try that are mostly likely to have the best performance for the single dataset at hand. This analysis determined, for example, that IG and Chi-Squared have correlated failures for precision, and that IG paired with BNS is a better choice. Notes: Copyright Springer-Verlag. Published in and presented at the 13th European Conference on Machine Learning (ECML '02)/6th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD), 19-23 August 2002, Helsinki, Finland

12 Pages

Back to Index

»Technical Reports

» 2009
» 2008
» 2007
» 2006
» 2005
» 2004
» 2003
» 2002
» 2001
» 2000
» 1990 - 1999

Heritage Technical Reports

» Compaq & DEC Technical Reports
» Tandem Technical Reports
Privacy statement Using this site means you accept its terms Feedback to HP Labs
© 2009 Hewlett-Packard Development Company, L.P.