

RDF Triples in XML

Jeremy J. Carroll, Patrick Stickler1

Digital Media Systems Laboratory
HP Laboratories Bristol
HPL-2003-268
February 11th , 2004*

E-mail: jjc@hpl.hp.com, Patrick.St ickler@nokia.com

semantic
web, RDF,
XML

Many approaches to writing RDF in XML have been proposed.
The revised standard RDF/XML still has many known problems. It
is not intrinsically difficult to have a clear serialization of RDF in
XML, and we present a simple solution. We add the ability to name
graphs, noting that in practice this is already widely used. We use
XSLT as a general syntactic extensibility mechanism to provide
human friendly macros for our syntax.

* Internal Accession Date Only Approved for External Publication
1 Nokia Hatanpäänkatu 1, 33900 Tampere, Finland
 Copyright Hewlett-Packard Company 2004

RDF Triples in XML

Jeremy J. Carroll
Hewlett-Packard Labs

Bristol, BS34 12QZ
UK

jjc@hpl.hp.com

Patrick Stickler
Nokia

Hatanpäänkatu 1
33900 Tampere

Finland

Patrick.Stickler@nokia.com

ABSTRACT
Many approaches to writing RDF in XML have been proposed.
The revised standard RDF/XML still has many known problems.
It is not intrinsically difficult to have a clear serialization of RDF
in XML, and we present a simple solution. We add the ability to
name graphs, noting that in practice this is already widely used. We
use XSLT as a general syntactic extensibility mechanism to provide
human friendly macros for our syntax.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms
and Methods—Representation languages

General Terms
Languages

Keywords
Semantic Web, RDF, XML

1. INTRODUCTION
It is well known that RDF/XML presents problems.
A cursory search with Google reveals half-a-dozen suggestions

for alternative XML syntaxes for RDF.
This paper presents another. Distinctively we select the simplic-

ity of N-triples [22] as our guide, and have an explicitly minimalist
set of requirements.

For cases where this set of requirements is insufficient we in-
dicate the use of the stylesheet processing instruction to provide
general purpose syntactic extensibility using XSLT [17].

A further distinctive feature of our syntax is explicit support for
naming of graphs.

1.1 Examples
Example 1: Here is a TRIX document:

<graphset
xmlns="http://jena.sourceforge.net/TriX/">

<graph>
<triple>

<uri>http://example.org/Bob</uri>
<uri>http://example.org/wife</uri>
<uri>http://example.org/Mary</uri>

</triple>
<triple>

<uri>http://example.org/Bob</uri>
<uri>http://example.org/name</uri>
<plainLiteral>Bob</plainLiteral>

</triple>
<triple>

<uri>http://example.org/Mary</uri>
<uri>http://example.org/age</uri>
<typedLiteral datatype=

"http://www.w3.org/2001/XMLSchema#integer"
>32</typedLiteral>

</triple>
</graph>

</graphset>

Syntactic extensions to the minimalist core, require a processing
instruction.Example 2 is the same graph expressed using qnames
and XSD type support:

<?xml-stylesheet type="text/xml" href=
"http://jena.sourceforge.net/TriX/all.xsl"

?>

<graphset
xmlns="http://jena.sourceforge.net/TriX/"
xmlns:eg="http://example.org/" >

<graph>
<triple>

<qname> eg:Bob </qname>
<qname> eg:wife </qname>
<qname> eg:Mary </qname>

</triple>
<triple>

<qname> eg:Bob </qname>
<qname> eg:name </qname>
<plainLiteral>Bob</plainLiteral>

</triple>
<triple>

<qname> eg:Mary </qname>
<qname> eg:age </qname>
<integer> 32 </integer>

</triple>
</graph>

</graphset>

2. THE REQUIREMENTS
The requirements we address are the following:

1. The format serializes the RDF graph.

2. The format is compatible with XML tools, such as XML
Schema [26], DTDs [11], XPath [18], XSLT [17]. In partic-
ular, it is straight forward to access the graph structure using
such tools.

3. As few other features are included as possible.

The last requirement is the most important. We will see that
one of the problems with RDF syntax is an excess of requirements

from different communities creating a political problem that may
get solved with a technical hack.

We argue later that the two additional features we add, naming of
graphs and syntactic extensibility, are well-chosen and appropriate.
Moreover they do not reflect the needs of any specific community,
but meet general requirements of many RDF users.

3. WHAT’S WRONG WITH RDF/XML?

3.1 A Brief History of RDF Syntax
The original RDF Syntax working group took input from Guha’s

MCF [23], Microsoft’s Web Collections [25], and Lassila’s Lisp
oriented PICS-NG format [38].

Mixing these together, taking something from everything, re-
sulted in RDF/XML in 1999 [30]. Since its publication, therehave
been a steady stream of alternatives.

Berners-Lee started the process, by proposing an unstripedsyn-
tax [5]. Melnik followed up with an attribute based proposal[35]
which could be used to bridge [34] between XML and RDF.

The next year (2000), Berners-Lee gave up on a usable XML
syntax for RDF, and proposed N3 [7].

In 2001, the RDF Core Working Group started, partly to fix the
RDF/XML syntax. Adobe launched XMP [1], which uses a proper
subset of RDF/XML. Robie [42] showed that a normalized subset
of RDF/XML could be used effectively with XQuery [9].

Seeing that RDF/XML was being revised rather than replaced,
Bray proposed another XML syntax RPV [10] in 2002.

In 2003, while completing the revision of RDF/XML [4], Beck-
ett proposed a simple XML form [3] inspired by N-triples [22],
a simple subset of N3 [7]. Both N-triples, and Beckett’s propos-
als stick very closely to the abstract syntax [29], which is agreat
strength. Meanwhile, Dubinko proposed another syntax [20], more
suited for embedding within HTML. The problem of embedding
RDF inside HTML is itself non-trivial [39], and is the topic of a
recent W3C taskforce [41].

Our history closes by returning to Berners-Lee, who in a recent
keynote presentation [6] referred to the ‘RDF syntax shock’.

3.2 RDF/XML Revised, but not Fixed
The W3C has just completed a major clean up of the syntax [4],

along with a clarification of the underlying data model [29],and its
intended interpretation [24].

While many syntactic problems have been fixed, and it is at least
plausible to have interoperability between RDF/XML implementa-
tions, some of the ‘postponed issues’ [33] indicate the extent of the
original mess.

� ‘RDF embedded in XHTML and other XML documents is
hard [i.e. impossible] to validate.’

� ‘it is not possible to define [. . .] a subset [of RDF/XML]
that [. . .] can represent all [. . .] RDF graphs [and] can be
described by an DTD or an XML Schema’

In brief, RDF/XML does not layer RDF on top of XML in a
useful way.

Meanwhile, there are other unresolved syntactic issues, involv-
ing qnames, collections, literals as subjects, blank nodesas predi-
cates, reification and quoting. Hence, a further round of work on
RDF/XML is likely to be a continuation of legacy hell, with addi-
tional requirements pulling in different directions, and old require-
ments not getting dropped.

3.3 Our Requirements and Prior Work
The requirement that the graph be simply reflected in the XML,

rules out most of the previous proposals. Many are based too closely
on RDF/XML to be salvagable, for example: XMP [1], Dubinko
[20] and Robie’s normalized RDF/XML [42].

The two early proposals from Berners-Lee [5] and Melnik [35]
both use attributes that can be added to an arbitrary XML docu-
ment, in a way that breaks DTDs and XML Schemata.

Bray’s RPV [10] does not address blank nodes. This leaves
Beckett’s proposals [3], which, while incompletely workedout,
do show that it is simple and straightforward to represent anRDF
graph as a set of elements each with three children.

4. WHAT’S RIGHT WITH RDF/XML?
Given the number of suggestions for change and RDF/XML’s

lack of popularity with the practioners, why does it continue?
Once you get used to it, it is surprisingly concise. The RDF data

model, in which everything is triples, is inevitable verbose - but
writing these triples in RDF/XML tends to ameliorate things.

The use of qnames to abbreviate URI references is concise, and
sufficiently liked that this convention is widely used, alsoin non-
XML contexts, e.g. in N3 [7], and the OWL Semantics [40] doc-
ument. The use of typed nodes, to avoid making a common triple
explicit, adds to the efficiency with which RDF/XML encodes the
RDF graph, and permits syntaxes which, to some extent, hide the
underlying triple structure.

This hiding of the triple structure makes it easy for users toget
into an RDF application such as OWL with only a partial under-
standing of its representation in RDF.

However, RDF/XML neithers permits complete hiding of the un-
derlying RDF, nor does it make it clear what that underlying RDF
is. We suggest that it is better to have clarity in the basic syntax,
with hiding achieved by using alternative syntactic forms that are
transformed into the basic syntax.

RDF/XML also provides a number of syntactic features which
are useful for certain sorts of construct:

�
rdf:parseType="Literal" is the only sensible way of em-
bedding XML into the RDF graph. (The alternative requires
knowledge of Exclusive XML Canonicalization [27]).

�
rdf:parseType="Collection" is useful when writing OWL
Ontologies [19].

�
rdf:parseType="Resource" is used extensively in XMP [1].

� The use of property attributes is useful when embedding RDF
in HTML.

Thus many communities find that while RDF/XML has many
features they do not like, certain key features are highly attractive
and keep them enagaged.

5. TRIX SYNTAX
The core of TRIX is the triple element, which contains three

children, the subject, predicate and object of the triple.
Each of these children is either auri element, anid element,

a plainLiteral or a typedLiteral element depending on whether
the corresponding node in the graph is an RDF URI reference, a
blank node or a literal (plain or typed).

The element content contains the label of the node (or the blank

node identifier). Whitespace normalization is applied touri
1 and

id element content.
We strongly prefer the use of absolute URI references inuri .

This ensures that XML based tools can easily compare twouri

nodes for equality. Relative URIs, if used, are resolved against the
base URL used to retrieve the document (as in RDF/XML without
xml:base).

plainLiteral elements can be modified by anxml:lang attribute.
xml:lang is prohibited elsewhere in the document (for example, it
is not permitted on the root element). This avoids any confusion as
to whether it applies to typed literals. It does not.

typedLiteral elements require adatatype attribute. As in RDF/XML.
no whitespace processing is performed. We note it is difficult to
write the legal lexical forms forrdf:XMLLiteral which have to
be exclusive canonical XML [27], which is escaped either with a
CDATA block, or using XML character escaping conventions.

A graph element has any number oftriple elements as children.
Optionally, the first child of agraph is a uri or id element, that
names the graph (see below). Thegraph element has a boolean
valued attributeasserted , which takes the default oftrue .

The root element of the document is agraphset element, which
has zero or more graphs as its child elements.

The ability to have more than one graph in a document, the
ability to name graphs, and the ability to mark some graphs as
unasserted, are all motivated by the extension of associating names
with graphs.

TRIX is described by a DTD, shown in table 1 and by an XML
Schema, shown in table 2. This format is very close to the RDF
abstract syntax [29], the only deviation being the ability to name
graphs.

<!-- TriX: RDF Triples in XML -->
<!ELEMENT graphset (graph*)>
<!ATTLIST graphset xmlns CDATA

#FIXED "http://example.org/TriX/">
<!ELEMENT graph ((id|uri)?, triple*)>
<!ATTLIST graph asserted (true|false) "true">
<!ELEMENT triple ((id|uri), uri,

(id|uri|plainLiteral|typedLiteral))>
<!ELEMENT id (#PCDATA)>
<!ELEMENT uri (#PCDATA)>
<!ELEMENT plainLiteral (#PCDATA)>
<!ATTLIST plainLiteral xml:lang CDATA #IMPLIED>
<!ELEMENT typedLiteral (#PCDATA)>
<!ATTLIST typedLiteral datatype CDATA #REQUIRED>

Table 1: TRIX DTD

6. NAMING GRAPHS
TRIX provides for graph naming either with global names by the

use of an optionaluri element before the triples of a graph, or with
file scoped names, by the use of an optionalid element.

1The XML Schema in table 2, uses thexsd:anyURI simple type
for these elements. The whitespace facet with valuecollapse con-
verts two successive spaces to a single space. This limits the ability
to represent all RDF URI references, which may include multiple
successive spaces. These problems will be resolved when theIn-
ternationalized Resource Identifier proposal[21], which prohibits
spaces, works its way through to the definition of bothanyURI and
RDF URI references.

<schema
xmlns = "http://www.w3.org/2001/XMLSchema"
xmlns:xsd = "http://www.w3.org/2001/XMLSchema"
xmlns:xml = "http://www.w3.org/XML/1998/namespace"
xmlns:trix = "http://jena.sourceforge.net/TriX/"
targetNamespace = "http://jena.sourceforge.net/TriX/" >

<import namespace="http://www.w3.org/XML/1998/namesp ace"
schemaLocation="xml.xsd"/>

<element name="graphset">
<complexType>

<sequence>
<element maxOccurs="unbounded" ref="trix:graph"/>

</sequence>
</complexType>

</element>

<element name="graph">
<complexType>

<sequence>
<choice minOccurs="0">

<element ref="trix:id"/>
<element ref="trix:uri"/>

</choice>
<element maxOccurs="unbounded" ref="trix:triple"/>

</sequence>
<attribute name="asserted" type="boolean" de-

fault="true"/>
</complexType>

</element>

<element name="triple">
<complexType>

<sequence>
<choice>

<element ref="trix:id"/>
<element ref="trix:uri"/>

</choice>
<element ref="trix:uri"/>
<choice>

<element ref="trix:id"/>
<element ref="trix:uri"/>
<element ref="trix:plainLiteral"/>
<element ref="trix:typedLiteral"/>

</choice>
</sequence>

</complexType>
</element>

<element name="id" type="NCName"/>

<element name="uri" type="anyURI"/>

<element name="plainLiteral">
<complexType>

<simpleContent>
<extension base="xsd:string">

<attribute ref="xml:lang"/>
</extension>

</simpleContent>
</complexType>

</element>

<element name="typedLiteral">
<complexType>

<simpleContent>
<extension base="xsd:string">

<attribute name="datatype"
type="anyURI" use="required"/>

</extension>
</simpleContent>

</complexType>
</element>

</schema>

Table 2: An XML Schema for TRIX

Example 3shows a named graph including its own provenance
information:

<graphset
xmlns="http://jena.sourceforge.net/TriX/">

<graph>
<id>binfo</id>
<triple>

<uri>http://example.org/aBook</uri>
<uri>http://purl.org/dc/elements/1.1/title</uri>
<typedLiteral datatype=

"http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLite ral"
><ex:title xmlns:ex="http://example.org/">

A Good Book
</ex:title></typedLiteral>

</triple>
<triple>

<uri>http://example.org/aBook</uri>
<uri>

http://www.w3.org/2000/01/rdf-schema#comment
</uri>
<plainLiteral xml:lang="en"
>This is a really good book!</plainLiteral>

</triple>
<triple>

<id>binfo</id>
<uri>http://example.org/source</uri>
<uri>http://example.org/book-description.rdf</uri>

</triple>
</graph>

</graphset>

Since we take an explicitly minimalist stance, we have to make
a strong case for this feature in TRIX .

We first give examples of naming of graphs in the field, showing
how the current technology is used for this. We find the current
solutions muddled andad hoc, and believe a standardized approach
will be highly beneficial.

Moreover, the requirement for graph naming, is not from one
community within the Semantic Web, but a requirement that goes
across the board. It is needed for metadata repositories, and for
ontological systems. Graph naming occurs in Semantic Web pro-
gramming environments and query languages. Nearly all users of
the Semantic Web name their graphs, the base syntax should pro-
vide explicit support.

6.1 Do Graphs need Naming?

6.1.1 Syndication
An obvious use for naming graphs is when many different sources

need to be aggregated, and it is desired to retain clarity about which
information came from which source. This is straightforward if
there are distinct graphs, and also a union graph. If the graphs
have names, then the provenance information can be attachedto
the names. Example 3 shows a graph including its provenance in-
formation.

6.1.2 Semantic Web Languages and Frameworks
One approach to graphs as first class objects occurs in N3 [7],

which provides contexts: these are sets of triples which aretreated
as anonymous resources. They can then be named usingowl:sameAs .
Alternatively they can participate in other graphs simply like a blank
node.

Query languages such as RQL [28] and RDQL [37] obviously
require the ability to refer to graphs. Often the document URL is
used as the name of the graph it contains.

Systems with views, such as TRIPLE [36], RVL [31] and Jena2
[14], not only use the naming of graphs of actual triples, butpermit
the naming of views of virtual triples (in some systems the views

may potentially be infinite). In RVL, the views are named using
XML Namespaces names; in TRIPLE the views are named using
resources.

6.1.3 Within the Standards
One place in which graphs are named and referred to extensively

is in the RDF Test Cases [22] and OWL Test Cases [15]. In order
to be able to name many graphs, and describe the relationships be-
tween them, each of these depends on a repository of hundredsof
files. The relationships described in the test manifest files, such as
entailment or equivalence, are described as relationshipsbetween
documents. What is intended is in fact a relationship between the
graphs contained within the documents.

The RDF recommendations provide for reification of statements
as a mechanism for using RDF to talk about RDF. However, it is
known not to work well. In typical use cases, such as adding prove-
nance information, their is a large triple bloat. Adding a reification
quad for every triple causes a five fold increase. Doing anything
with these then requires minimally one extra triple to link the rei-
fied triple in with say a ‘reified graph’. More frequently, thesame
provenance information, perhaps four or five triples, are duplicated
and added to every reified triple. Thus the use of reification results
in maybe a tenfold blow up. What is worse, is that having done
this, the triples do not mean what one might hope. As is clarified in
the RDF Semantics [24], reification isnot a quoting mechanism.

The OWL Ontology element and the OWL imports mechanisms
both try to refer to named graphs. They use the document URL
as the name. This creates somewhat unclear semantics, stated in
operational terms. The subject ofowl:imports triples gets almost
entirely ignored. The OWL recommendations fail to adequately ac-
count for the intended relationship between the ontology name and
the ontology content (whether thought of as abstract syntaxtrees or
RDF triples [2]). This is particularly clear when trying to convert
the imports closure of a document, which is a large graph, into a
set of abstract syntax trees, one corresponding to each ontology el-
ement. There is no method for determining which triple is mapped
into which tree. Explicit graph naming would help to make the
intensions clearer.

6.1.4 Signing Graphs
Carroll [13] presents an algorithm for generating a canonical

names for the blank nodes and hence a canonical ordering of the
triples of a (possibly slightly modified) RDF graph.

This could become a core part of the Semantic Web infrastruc-
ture by permitting verification of provenance information.

However, it requires the ability to separate out separate sub-
graphs of whatever data a system is using, so that the variouspieces
from different sources can have their signatures verified.

6.2 A Minimalist Graph Naming Mechanism
The name associated with a graph is a way of referring to the

syntactic object. In RDF terms, it is the equivalence class of RDF
graphs. Blank node labels, and the order of the triples, do not mat-
ter. The choice of which URI we use to refer to each resource in
the graph does matter. Contrast with the semantics of reification
which concerns the interpretation of, for example, the predicate
URI, rather than the URI itself.

To say anything about the graph, e.g. provenance information,
some triples are needed that involve this node. These triples can
be included within the graph, which then includes assertions about
itself, or they can be in a separate graph in the same document, or
they can be in a separate document (which requires the use of auri
node naming the graph). Example 3 shows the first of these possi-

bilities. In the second case, we may wish to state the provenance
information, without committing ourselves to the originalgraph.
This is shown inexample 4, modified from example 3:

<graphset
xmlns="http://jena.sourceforge.net/TriX/">

<graph asserted="false">
<id>binfo</id>
<triple>

<uri>http://example.org/aBook</uri>
<uri>http://purl.org/dc/elements/1.1/title</uri>
<typedLiteral datatype=

"http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLite ral"
><ex:title xmlns:ex="http://example.org/">

A Good Book
</ex:title></typedLiteral>

</triple>
<triple>

<uri>http://example.org/aBook</uri>
<uri>

http://www.w3.org/2000/01/rdf-schema#comment
</uri>
<plainLiteral xml:lang="en"
>This is a really good book!</plainLiteral>

</triple>
</graph>
<graph>

<triple>
<id>binfo</id>
<uri>http://example.org/source</uri>
<uri>http://example.org/book-description.rdf</uri>

</triple>
</graph>

</graphset>

The first graph, is merely quoted, indicated by theasserted =

"false" attribute. The assertional content of the example is given
in the second graph.

Other possible additional requirements are dealt with in the next
section as syntactic extensions. Graph naming might have been
provided in a similar style by mapping a syntactic extensionto the
RDF reification vocabulary. However, this would be limited by the
meaning of the reification vocabulary, as described in RDF seman-
tics [24]. Since the intent is to provide a mechanism that canbe
used for quoting, which is explicitly excluded by the RDF seman-
tics, providing core syntax is necessary.

6.3 The Semantics of Graph Naming
The formal semantics of this construct is beyond the scope of

this paper.
The intended informal semantics is that the node used for nam-

ing a graph is interpreted as the RDF graph specified within the
<graph> element. Thus, statements about the node are statements
about the graph. More strictly such a node denotes an equivalence
class of RDF graphs. RDF graph equivalence, as defined by RDF
Concepts permits reordering of the triples, and relabelling of the
blank nodes.

This differs from merely extending RDF triples to RDF quads,in
that the full extent of the graph is known, and is not treated with the
open world assumption. Unlike a subject resource, which mayhave
additional properties not mentioned in a document, the assertion of
a named graph asserts that this graph is exactly the triples given,
and there are not any others that have been omitted. Significantly,
this intended semanticsis a quoting mechanism and does not suffer
the ‘two-stage interpretation process’ discussed for RDF reification
in RDF Semantics. A naive extension of the RDF model theory to
cover quads rather than triples would replicate this defectin the
reification semantics.

The meaning of thegraphset is intended to be the logicalAND

of the meaning of the asserted graphs. Thus a graph for which

asserted is false is quoted, and can be referred to in other graphs,
but does not contribute to the meaning of thegraphset .

It is likely that details of the informal semantics will needto
change as work proceeds on the formal semantics of naming graphs.
The graph may include triples involving itself, which may create
semantic difficulties. Some semantic theories may exclude such
graphs – much as OWL DL semantics excludes RDF graphs in
which rdf:type is given a subproperty. Similar difficulties may oc-
cur when two graphs within agraphset share a blank node. Such
a case is neither explicitly covered, nor explicitly excluded by the
RDF semantics.

The problem of different RDF graphs having different asser-
tional status is already present in the RDF and OWL recommen-
dations, in the RDF and OWL Test Cases [15, 22]. An OWL con-
sistency test consists of two files: a Manifest file that is intended as
an assertion about a second file, which contains a consistentOWL
document. The second file is not intended to be asserted in thesame
way.

6.4 A Further Example
As well as provenance information, named graphs can be used

to encode rules (such as using thelog:implies connective in N3),
and test cases.

Example 5shows how an RDF test case might be formulated in
TRIX . The vocabulary is closely based on the vocabulary used in
the RDF Test Cases [22].

<graphset>

<graph>
<triple>

<uri>
http://example.org/tests/language-tag-case

</uri>
<uri>http://example.org/entailmentRules</uri>
<uri>http://www.w3.org/1999/02/22-rdf-syntax-ns#</u ri>

</triple>
<triple>

<uri>
http://example.org/tests/language-tag-case

</uri>
<uri>http://example.org/premise</uri>
<uri>http://example.org/tests/graph1</uri>

</triple>
<triple>

<uri>
http://example.org/tests/language-tag-case

</uri>
<uri>http://example.org/conclusion</uri>
<uri>http://example.org/tests/graph2</uri>

</triple>
</graph>

<graph asserted="false">
<uri>http://example.org/tests/graph1</uri>
<triple>

<id>x</id>
<uri>http://example.org/property</uri>
<plainLiteral xml:lang="en-us">a</plainLiteral>

</triple>
</graph>

<graph asserted="false">
<uri>http://example.org/tests/graph2</uri>
<triple>

<id>x</id>
<uri>http://example.org/property</uri>
<plainLiteral xml:lang="en-US">a</plainLiteral>

</triple>
</graph>
</graphset>

6.5 The Liar’s Paradox
Unfortunately, named graphs combined with ‘logical’ vocabu-

lary (concerning logical metaproperties such as entailment) can be
used to encode the liar’s paradox.

For example, in N3, we can say:

@prefix log: <http://www.w3.org/2000/10/swap/log#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix eg: <http://example.org/> .�

eg:liar
log:implies

�
eg:noone a owl:Nothing .�
.�

owl:sameAs eg:liar .
eg:liar a log:Truth .

The same example could be encoded in TRIX , with the N3 for-
mula construct using� and � corresponding to the bnode naming
a graph with the given triples. We could also make a similar ex-
ample using vocabulary like the RDF Test Cases [22] vocabulary
(replacing thetest:premiseDocument and test:conclusionDocu-

ment with eg:premise andeg:conclusion , as in example 5).
This would appear a fatal error with our proposal for graph nam-

ing. However, we have only clarified pre-existing problems.Using
the actual RDF test vocabulary, we can use a manifest file’s own
URI as the URI of the premise document, and create an analogous
paradoxical RDF test case.

Our clarification shows that some solution is required to this po-
tential for paradox, since in the Semantic Web we (already) name
graphs (if only with document URLs), and already have (implicit)
quoting.

We take Wittgenstein’s [43] optimisitic view of such paradoxes:
‘All we have to do is to make a new stipulation to cover the case
in which the rules conflict, and the matter’s resolved.’ The paradox
does not arise from named graphsper se, but from the combina-
tion of named graphs and logical connectives (that depend ona
further reference to the semantic theory). Thus, a simple resolution
would be to rule such properties as out of scope for RDF proper-
ties. This would invalidate the logical connectives in N3, and the
Manifest file format of the RDF and OWL test suites, but would
leave the provenance and signing examples intact. It is probably
not too difficult to find some appropriate well-foundnesses crite-
ria, such as not permitting ‘logical’ properties to be used in triples
whose subject or object contains (directly or indirectly) the triple
itself. It would be particularly attractive to be able to classify such
paradoxes as merely inconsistent. This paper is not the place for
such explorations: by clarifying the syntactic self-reference that is
already in use within the Semantic Web, we have articulated the
need for such work to be done.

7. EXTENSIBILITY
We have seen in section 3, that there are many different commu-

nities with an interest in XML syntaxes for RDF. Each community
brings their own requirements.

Moreover requirements related to ease of writing and reading an
XML syntax for RDF tend, in general, to conflict with the core
requirements of giving a transparent representation of thegraph
in a way that can easily be processed with XML tools. This is
because the RDF graph tends to be too fine-grained and detailed
for direct human consumption, and user-friendly syntaxes need to
use ‘macros’ of some sort. In RDF/XML macros are provided for
typed nodes, property attribtues, three parseTypes, striping, reifica-
tion and container membership. These macros then create problems
for XML tools.

The answer we suggest is to have a general purpose and interop-
erable extensibility mechanism. Each community can then define
and use whatever syntactic extensions they wish, declaringthe ex-

tensions they are using at the top of the data files. As long as the
extensions are described in a standard way and are identifiedwith
URLs, any processor can apply them.

To be more specific we use XSLT as the syntactic extensibility
mechanism, and the stylesheet processing instruction [16]as the
declaration.

We start by showing in detail how the TRIX syntax can be made
more user-friendly using qnames, using this mechanism. We then
sketch other useful extensions, forxml:base , XMLLiterals, collec-
tions, and typed literals.

7.1 QNames
Using qnames to abbreviate URI references is popular, appearing

most noticeably in many e-mail messages discussing RDF triples.
This convention is not strictly necessary, similar effect can be

achieved in TRIX using XML entities. If the size of documents
using full URIrefs is an issue then standard compression techniques
can be used.

However, human readers and writers of RDF documents would
like to see and use qnames. We hence, extend the TRIX syntax to
include aqname element. Its content is a qname which abbreviates
a URI reference, in the normal way. This can be transformed into a
uri element using an XSLT program with the following rule:

<xsl:template match="trix:qname">
<uri>
<xsl:value-of

select="namespace::*[
local-name()=substring-before(text(),’:’)

]"/>
<xsl:value-of select="substring-after(text(),’:’)"/>
</uri>

</xsl:template>

Example 2, in the introduction, shows this being used.

7.2 xml:base
The use of relative URIs is often convenient when writing doc-

uments. They also may make a document easier to read, by elimi-
nating redundant information.

A further transformation resolves any relative URIs insideuri

elements, using the inscopexml:base value [32].
Hence, the first triple of example 1 can be written using this ex-

tension:

<?xml-stylesheet type="text/xml" href=
"http://jena.sourceforge.net/TriX/xmlbase.xsl"

?>
<graphset

xml:base="http://example.org/"
xmlns="http://jena.sourceforge.net/TriX/">

<graph>
<triple>

<uri>Bob</uri>
<uri>wife</uri>
<uri>Mary</uri>

</triple>
.
.
.

</graph>

</graphset>

7.3 Typed literals
Always usingdatatype with a URI for typed literals is repetitive.

A solution for the XML Schema builtin simple types [8], is to pro-
vide a transform that permits each such simple type as an element
name, and converts it into an appropriate literal. This transform
can perform the appropriate whitespace processing, as given by the
whitespace facet of the datatype.

A sample XSLT template is as follows:

<xsl:template match="trix:decimal">
<typedLiteral

datatype="http://www.w3.org/2001/XMLSchema#decimal" >
<xsl:value-of

select="normalize-space(text())"/>
</typedLiteral>

</xsl:template>

which transforms, for example,<decimal> 4.0 </decimal> into
<typedLiteral datatype="http://www.w3.org/2001/XMLSc hema#-

decimal"> 4.0 </literal> . Again, this is illustrated in example
2.

7.4 XMLLiterals
Since the lexical form of an XMLLiteral has to be in exclusive

Canonical XML, it is virtually impossible to create these except
with machine support.

Since the definition of these in RDF concepts specifies that the
InclusiveNamespaces PrefixListis empty, all the information needed
to perform the canonicalization is in the XPath nodeset, andso,
the transformation can be performed with XSLT (with some diffi-
culty)2.

So, the extensibility mechanism is powerful enough to support a
transform that transforms say:

<xmlliteral><foo b="B" a="A"/></xmlliteral>

into

<typedliteral datatype=
"http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLite ral"
><foo a="A" b="B"></foo></typedliteral>

7.5 Collections
The rdf:parseType="Collection" construct of RDF/XML in-

troduces many triples and blank nodes to represent list structures in
RDF.

A similar TRIX extension can be defined using an XSL trans-
from. One slightly tricky detail concerns the names of blanknodes.
Since the transform needs to introduce new nodes, it must be sure
not to use names being used elsewhere. One way is to rename all
preexisting blank nodes using a rule such as:

<xsl:template match="trix:id">
<id>
<xsl:text>u.</xsl:text>
<xsl:value-of

select="normalize-space(text())"/>
</id>

</xsl:template>

Using this, and a more complex set of rules for the collections
themselves, a transfrom can be defined that converts:

<triple>
<id> aDescription </id>
<uri> &owl;intersectionOf </uri>
<collection>

<id> one </id>
</collection>

</triple>

into

<triple>
<id> u.aDescription </id>
<uri> &owl;intersectionOf </uri>

2The sort in XSLT 1.0 leaves too much as implementation defined.
It is possible in XSLT 2.0 to specify precisely the sort needed for
attribute ordering in XML Canonicalization.

<id> t.23 </id>
</triple>
<triple>

<id> t.23 </id>
<uri> &rdf;first </uri>
<id> u.one </id>

</triple>
<triple>

<id> t.23 </id>
<uri> &rdf;rest </uri>
<id> &rdf;nil </id>

</triple>

Such a transform is indifferent to the nature of the collection con-
tent, and so can also be used with a collection of literals (ora mixed
collection). This addresses the problem seen with the datarange
construct in OWL DL exhibited in testoneof-004 of the OWL Test
Cases [15].

7.6 RDF/XML as a TRIX Extension
In fact, it is possible to write an RDF/XML parser using XSLT.

An example is Snail [12], which while unusably slow3, does show
that it can be done.

Hence it would be possible to view RDF/XML as a syntactic ex-
tension to TRIX . Prepending an appropriate stylesheet processing
instructions provides backward compatibility.

7.7 An Evolving Set of Syntactic Extensions
With such a web based approach to syntactic extensibility any-

one can define their own extensions. Those that are useful will be
used; those that are not, will not.

This will form an evolutionary system for designing useful XML
serializations for RDF.

Since XSLT is not always the most efficient processing environ-
ment some TRIX processors may be coded with prior knowledge
of well-known extensions. For these, the stylesheets wouldnot be
invoked, but instead some equivalent code would be used.

8. CANONICAL T RIX
Canonical TRIX documents can be defined by:

� Requiring each graph in the graphset to have a name (poten-
tially introducing a new blank node).

� Canonical assigning identifiers for the blank nodes.

� Lexicographically ordering the triples in each graph.

� Sorting the graphs into lexicographic order by their names

� Following a set of rules concerning the optional whitespace.

Blank node labels can be assigned using the techniques described
for signing RDF graphs in [13].

The simplest rule for optional whitespace would be that there
is none. It may be preferred to have a newline before each start
element (except the document root), possibly indented by one space
for children of the root, two spaces for grandchildren of theroot,
and three spaces for great grandchildren.

This suffers from the same limitations as for signing RDF graphs,
and some graphs need to be modifed to semantically equivalent
ones, before canonicalization. Details are in [13].

3Snail’s purpose was to illustrate an approach to defining
RDF/XML rather than to be a serious implementation.

9. EVALUATION

9.1 Comparison with RDF/XML
TRIX achieves the goal of being generically processable by XML

tools. XPath [18] expressions to pick out triples and/or resources,
are straightforward. Queries can be reformulated from RDF query
languages, such as RDQL [37] into XML languages such as XQuery
[9].

RDF/XML is more user friendly and more concise.
TRIX with syntactic extensions achieves both sets of goals, in

that, by applying the transfroms, the advantages of TRIX can be re-
alized, or by not applying the transforms, the advantages ofRDF/XML
can be realized.

The simplicity of the TRIX serialization reflects the underlying
simplicity of the RDF conceptual model, rather than the misleading
impression left by the baroqueness of RDF/XML.

9.2 Comparison with Beckett’s Proposals
In our survey in section 3.1, we identified Beckett’s proposals [3]

as the most promising.
He identifies choices such as:

� whether to use named elements for subject, predicate and ob-
ject or to rely on position within a triple.

� whether to permit the use of qnames to abbreivate urirefs.

� whether to use attributes or element content.

We have used position to identify the rôle in the triple, thepro-
posedsubject element gives redundant information that might be
useful to a human reader, but we do not really expect TRIX to be
very human readable.

For similar reasons, we avoid allowing qnames as abbreviations,
except as a syntactic extension. The uniformity makes it easier to
process the RDF graph with XML tools, since there is no need to
consider the case where a node is represented by aqname element
in one triple, and by auri element in another. It also avoids the
difficulties caused by the differences in treatment of qnames be-
tween RDF and XML. In RDF, a qname is merely an abbreviation,
whereas in XML a qname is a pair: a namespace name and a local
name.

We determined that using attributes for literal content creates un-
necessary problems, concerning XML attribute value normaliza-
tion [11]. Hence, literal values, as in the examples in [3], must
be expressed as element content. For uniformity, we hence also
express urirefs and blank node identifiers using element content.

The naming of graphs and syntactic extensibility are not dis-
cussed by Beckett in [3].

10. CONCLUSIONS
The problem of how to serialize RDF in XML has produced

many proposals. Most, particularly RDF/XML, obscure the na-
ture of the RDF graph, hence making the problem seem difficult.
Despite the revision of RDF/XML, discussions continue.

With little difficulty, we have produced a thought-out and simple
proposal. We suggest that it is time that the Semantic Web commu-
nity choose a simple serialization such as ours, and stoppedwasting
time with this problem.

The use of XSLT as an extensibility mechanism permits the in-
evitably rather unreadable machine-friendly syntax to be represented
in a more human-friendly fashion. It also permits backward com-
patibility with RDF/XML.

Naming graphs is a necessary part of the Semantic Web, and
should be included in the core syntax. More work on the semantics
of graph naming is needed, particularly to address the difficulties
of logical predicates.

11. REFERENCES
[1] Adobe. XMP – Extensible Metadata Platform.

http://partners.adobe.com/asn/developer/xmp/pdf/

MetadataFramework.pdf , 2001.
[2] S. Bechhofer and J. Carroll. OWL DL: Tress or Triples?

Submitted to WWW2004, 2003.
[3] D. Beckett. A retrospective on the development of the

RDF/XML Revised Syntax .
http://ilrt.org/people/cmdjb/2003/05/iswc/ , 2003.

[4] D. Beckett. RDF/XML Syntax Specification (Revised).
http://www.w3.org/TR/rdf-syntax-grammar/ , 2003.

[5] T. Berners-Lee. A strawman Unstriped syntax for RDF in
XML. http://www.w3.org/DesignIssues/Syntax , 1999.

[6] T. Berners-Lee. SW status and direction.
http://www.w3.org/2003/Talks/1023-iswc-tbl/all.htm ,
2003. Keynote address at ISWC 2003.

[7] T. Berners-Lee, R. R. Swick, J. Reagle, S. Hawke, and
D. Connolly. Primer: Getting into RDF & Semantic Web
using N3.http://www.w3.org/2000/10/swap/Primer .

[8] P. Biron and A.Malhotra. XML Schema Part 2: Datatypes.
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/ ,
2001.

[9] S. Boag, D. Chamberlin, M.F.Fernández, D. Florescu,
J. Robie, and J. Siméon. XQuery 1.0: An XML Query
Language.
http://www.w3.org/TR/2003/WD-xquery-20030822/ , 2003.

[10] T. Bray. The RPV (Resource/Property/Value) Syntax for
RDF.http://http://www.textuality.com/xml/RPV.html .

[11] T. Bray, J. Paoli, C. Sperberg-McQueen, and E. Maler.
Extensible Markup Language (XML) 1.0 (Second Edition).
http://www.w3.org/TR/2000/REC-xml-20001006 , 2000.

[12] J. Carroll. Snail: Excruciatingly Slow RDF Parsing.
http://www-uk.hpl.hp.com/people/jjc/snail/ , 2001.

[13] J. Carroll. Signing RDF Graphs. InThe Semantic Web -
ISWC 2003, number 2870 in LNCS, pages 369–384.
Springer, 2003.

[14] J. Carroll, I.Dickinson, C. Dollin, D. Reynolds, A. Seaborne,
and K. Wilkinson. The jena semantic web platform:
Architecture and design. Submitted to WWW2004, 2003.

[15] J. J. Carroll and J. D. Roo. Web Ontology Language (OWL)
Test Cases.http://www.w3.org/TR/owl-test/ , 2003.

[16] J. Clark. Associating Style Sheets with XML documents
Version 1.0.http:

//www.w3.org/1999/06/REC-xml-stylesheet-19990629/ ,
1999.

[17] J. Clark. XSL Transformations (XSLT) Version 1.0.
http://www.w3.org/TR/1999/REC-xslt-19991116 , 1999.

[18] J. Clark and S. DeRose. XML Path Language (XPath)
Version 1.0.
http://www.w3.org/TR/1999/REC-xpath-19991116 , 1999.

[19] M. Dean and G. Schreiber. OWL Web Ontology Language
Reference.http://www.w3.org/TR/owl-ref/ , 2003.

[20] M. Dubinko. Metadata for Grandma.
http://www.dubinko.info/writing/meta/ , 2002.

[21] M. Dürst and M. Suignard. Internationalized Resource
Identifiers (IRIs) draft-duerst-iri-04.http://www.w3.org/

International/iri-edit/draft-duerst-iri-04 , 2003.
[22] J. Grant and D. Beckett. RDF Test Cases .

http://www.w3.org/TR/rdf-testcases/ , 2003.
[23] R. Guha and T. Bray. Meta Content Framework Using XML

. http://www.w3.org/TR/NOTE-MCF-XML-970624/ , 1997.
[24] P. Hayes. RDF Semantics .http://www.w3.org/TR/rdf-mt/ ,

2003.
[25] A. Hopmann, S. Berkun, and G. Hatoun. Web Collections

using XML . http://www.w3.org/TR/NOTE-XMLsubmit , 1997.
[26] H.S.Thompson, D. Beech, M. Maloney, and N. Mendelsohn.

XML Schema Part 1: Structures.
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/ ,
2001.

[27] J. R. J. Boyer, D.E.Eastlake 3rd. Exclusive XML
Canonicalization Version 1.0.http:

//www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/ ,
2002.

[28] G. Karvounarkis, S. Alexaki, V. Christophides,
D. Plexousakis, and M. Scholl. Rql: A declarative query
language for rdf. InProceedings of the Eleventh
International World Wide Web Conference, pages 592–603,
2002.

[29] G. Klyne and J. Carroll. Resource Description Framework
(RDF): Concepts and Abstract Syntax.
http://www.w3.org/TR/rdf-concepts/ , 2003.

[30] O. Lassila and R.R.Swick. Resource Description Framework
(RDF) Model and Syntax Specification .
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/ ,
1999.

[31] A. Magkanarki, V. Tannen, V. Christophides, and
D. Plexousakis. Viewing the semantic web through rvl
lenses. InThe Semantic Web - ISWC 2003, number 2870 in
LNCS, pages 96–112. Springer, 2003.

[32] J. Marsh. XML Base.
http://www.w3.org/TR/2001/REC-xmlbase-20010627/ ,
2001.

[33] B. McBride. RDF Issue Tracking.
http://www.w3.org/2000/03/rdf-tracking/ , 2003.

[34] S. Melnik. Bridging the Gap between RDF and XML.
http://www-db.stanford.edu/˜melnik/rdf/fusion.html ,
1999.

[35] S. Melnik. Simplified Syntax for RDF.
http://www-db.stanford.edu/˜melnik/rdf/syntax.html ,
1999.

[36] Z. Miklós, G. Neumann, U. Zdun, and M. Sintek. Querying
semantic web resources using triple views. InThe Semantic
Web - ISWC 2003, number 2870 in LNCS, pages 517–532.
Springer, 2003.

[37] L. Miller, A. Seaborne, and A. Reggiori. Three
implementations of squishql, a simple rdf query language. In
The Semantic Web — ISWC 2002, page 423ff., 2002.

[38] O.Lassila. Web Collections using XML .http:

//www.w3.org/TR/NOTE-pics-ng-metadata-970514.html ,
1997.

[39] S. Palmer. RDF in HTML: approaches.
http://infomesh.net/2002/rdfinhtml/ , 2002.

[40] P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web
Ontology Language Semantics and Abstract Syntax.
http://www.w3.org/TR/owl-semantics/ , 2003.

[41] J. Reagle and D. Hazaël-Massieux. RDF in XHTML.
http://www.w3.org/2003/03/rdf-in-xml.html , 2003.

[42] J. Robie. The syntactic web. InXML 2001, 2001.
[43] L. Wittgenstein.Philosophical Remarks. Blackwell, 1975.

Appendix 2, F. Waismann’s shorthand notes, Wed. 17
December, 1930, Neuwaldegg.

