A

invent

The Ultimatum Conundrum

Alan H. Karp, Kay-yut Chen, Ren Wu
Mobile and Media Systems L aboratory
HP Laboratories Palo Alto
HPL-2004-77

April 21, 2004*

E-mail: { alan.karp,kay-yut.chen,ren.wu} @hp.com

automated We have developed software that adapts the techniques used by game
negotiation, game playing computer programs to the problem of negotiating good deals. In
theory, bargaining every test case, this strategy recommends making an ultimatum. On

examining the protocol, we found that it is equivalent to a standard form
of the bargaining game, which has an ultimatum as the Nash equilibrium.
In practice, this strategy is unlikely to lead to a desirable result.

We report severa failed attempts to induce the strategy to recommend
more reasonable counteroffers. Only when we include uncertainty in the
other participant's constraints does the strategy recommend a counteroffer
other than an ultimatum. We show how this uncertainty can be included
in the strategy algorithm without introducing heuristics.

* Internal Accession Date Only Approved for External Publication
a Copyright Hewlett-Packard Company 2004

The Ultimatum Conundrum

Alan H. Karp, Kay-yut Chen, Ren Wu
Hewlett-Packard Laboratories
{alan.karp kay-yut.chen,ren.wu}@hp.com

April 12, 2004

Abstract

We have developed software that adapts the techniques used by game
playing computer programs to the problem of negotiating good deals. In
every test case, this strategy recommends making an ultimatum. On
examining the protocol, we found that it is equivalent to a standard form
of the bargaining game, which has an ultimatum as the Nash equilibrium.
In practice, this strategy is unlikely to lead to a desirable result.

We report several failed attempts to induce the strategy to recommend
more reasonable counteroffers. Only when we include uncertainty in the
other participant’s constraints does the strategy recommend a counteroffer
other than an ultimatum. We show how this uncertainty can be included
in the strategy algorithm without introducing heuristics.

1 Introduction

Negotiation is an important and constant theme of research in multiple fields [5].
In this paper, we propose a reasonable framework for negotiations and an asso-
ciated algorithm that can automate negotiations in this framework with some
intelligence. The framework is reasonable in the sense that it includes many
factors seen in face-to-face negotiations. The automation exhibits intelligence
in the sense that the offers it makes can be explained in terms of the goals of
the negotiator. The aim of this research is to create a tool that negotiates deals
comparable to those people reach.

The framework for the negotiation [4] is a specific version of the bilateral
offer-counteroffer game [1] in which an offer is defined by a set of parameters
in a multiple dimensional space. Each parameter can take on values in a finite
discrete set or in a subset of the real line. The initial offer is a subset of
the parameter space of the contract template. The framework requires each
subsequent offer to be a subset of the previous one. Each player also has the
option of declaring "no deal” instead of making a counteroffer.

We developed an algorithm similar to that used by game playing computer
programs to conduct automated negotiation under this framework [3]. This
algorithm examines the whole decision tree and the associated expected payoffs,

with a special allowance for continuous decision variables, and finds the optimal
strategy by backward induction. In the case where there is a cost associated
with successive rounds of offers, this algorithm successfully finds the subgame
perfect equilibrium in which the first mover poses an ultimatum to the other
player and the second player accepts [6].

We know that most real world negotiations, which resemble the offer-counter-
offer game, do not end in ultimatums, even when there is a time penalty. One
of the reasons is that the model game assumes that the utility functions of both
players are common knowledge and it does not take into account any learning
effects. If T only have partial information about your utility function, and if I
can learn about it through negotiation, it may pay for me to spend some time
(and thus money) to learn about your utility function.

One way to represent my uncertainty in your utility is for me to represent
it in the form of a mean and standard deviation. The learning can consist of
updating the estimates of these values as the negotiation proceeds. However,
simply adding this uncertainty does not solve the problem. The tree strategy
simply recommends an ultimatum that is likely to have positive utility for the
other party. A number of other attempts at getting the tool to recommend
“reasonable” offers also failed. This failure represents the conundrum of the
title of this paper.

One factor was found to produce reasonable offers, uncertainty in the other
party’s constraints. If I don’t know what offers might cause you to walk away
from the bargaining table, my best offer is one that leaves open as many options
as possible. This offer must balance the goal of driving the negotiation in a
direction favorable to me while maximizing the likelihood of reaching a deal.
One way to achieve this goal is by using some heuristic, such as limiting the
amount by which the space is narrowed on each offer. Such heuristics are often
specific to each negotiation, and quantifying them is difficult.

We avoid heuristics in our model by allowing the algorithm to maintain a
set of internally consistent estimates of the likelihood of rejection of different
deals. For example, say that option B is worth slightly more to me than option
C. In the Rubinstein bargaining model, I would make an ultimatum including
option B. In our model, I take into account the fact that either of them may
be unacceptable to you. For example, I may believe that each of them has a
50% chance of being rejected. If I pick option B, my expected payoff is half
the utility of any deal containing B. Assuming independence, not a necessary
condition but one that makes the example simpler, I get higher expected utility
if T offer a set that includes both B and C and let you choose between them.
Giving you the choice to choose B or C increases my probability of completing
the deal substantially (75% wvs. 50%), which can be interpreted as a kind of
implicit learning.

Our model includes a full specification of utility functions with uncertainty
and a set of internally consistent estimates of the probabilities of rejections
of different deals. The estimate of the opponent’s utility function are used
to predict the opponent’s counteroffers in order to estimate the direction the
negotiation will take. The estimate of the opponent’s constraints balance the

tendency toward the Nash equilibrium. Simulation has shown that this approach
can result in “reasonable” negotiations in which players will try to use offers and
counter-offers to gain knowledge of the other player’s constraints.

The paper is organized in the following manner. Section 2 describes the
negotiating environment. Section 3 shows an example of how the algorithm
reaches an ultimatum. Section 4 illustrates how the additional assumptions
about learning resulted in much more ”reasonable” negotiations.

2 Negotiating Environment

The problem identified in the preceding section arises because of the particular
rules of the game being played. Section 2.1 summarizes those rules [4]. The
heuristics-free resolution of that problem depends on the negotiating strategy
is summarized in Section 2.2.

2.1 Rules of Engagement

We assume that the goal of the negotiation is to fill in the blanks in a contract
template provided by the marketplace in which we’re negotiating. A contract
template consist of a set of sections. Each section defines a specific aspect of the
contract, such as terms of payment or product description. The description in
a section is specified in a vocabulary, which consists of a collection of attributes.
Each attribute is a name-value pair and has a number of other properties, such
as multiplicity and matching rule [4].

The negotiating parties, two in the examples studied, take turns exchanging
offers. An offer consists of values, numeric ranges or sets of values, for a subset
of the attributes included in the previous offer. A legal counteroffer must narrow
the range of potential deals by eliminating at least one attribute value and/or
narrowing at least one numeric range. Once an attribute has appeared with
a single value in both an offer and counteroffer, it is settled and may not be
reintroduced into the negotiation. A binding contract is formed when all the
attributes are settled. Either party can declare the negotiation failed at any
time before an agreement is reached.

Figure 1 illustrates the process. The axes represent the payoffs, of various
deals to the negotiators Sally Seller and Bob Buyer. Bob wants the deal highest
in the graph; Sally, the one farthest to the right. Points on the segment of the
boundary between these two points are Pareto optimal.

Every possible deal reachable from the initial offer is contained in the outer
boundary, but not all points in the interior represent deals. The protocol speci-
fies that a legal counteroffer must narrow the range. We see from the figure that
the first counteroffer does not preclude reaching an efficient deal, but that the
second one does. The final deal reached is quite far from the efficient frontier.
Both players would benefit if either or both used a better strategy.

2.2 Game Tree Strategy

The protocol defined in Section 2.1 constitutes a game that ends in a finite
number of moves. If this game were chess, we’d build a game tree to find
the best move [2]. We use the same ideas for negotiation, but there are some
complications. In chess, we know that the other player wants to win but will
settle for a draw. In a negotiation, we have only an estimate of what the
other party wants. In addition, chess pieces can only move an integer number
of squares, but negotiations can be over continuous amounts, such as liquid
measures, or effectively continuous quantities, such as price.

The input to the tree strategy code is the current offer, a measure of time
since the start of the negotiation, and the set of players. Each player has a
utility function, known for the player using the strategy and estimated for the
other player. These utility functions [4] are sufficiently complex that we treat
them as black boxes; put in a potential contract and get out a payoff. We
make no assumptions of linearity or even continuity. In addition, each player is
identified by a strategy and a set of parameters that denote how to handle the
continuous attribute values.

We identify the root node of the game tree with the current position and
generate child nodes representing every legal counteroffer. Any counteroffer
involving any combination of attributes with continuous values is marked as
such. If a child node and its parent are both marked in this way, we end the

Best deal for Bob

Efficient deal

Best deal
for Sally

Payoff to Bob

Payoff to Sally

Figure 1: Narrowing the deal space.

expansion along that branch [3].

Once the tree is expanded, we ask the root node to evaluate itself. To do so,
it asks each of its children to evaluate themselves. If one of the corresponding
moves involves a change to a range-valued attribute, the node uses some opti-
mization algorithm. It asks its children to evaluate themselves for one or more
trial values of the attribute and uses the resulting payoffs to select an optimal
value to represent the offer. On reaching a node representing a complete offer, a
leaf, the node computes its payoff using the players’ utility functions. The pay-
offs of a node’s children are used to compute the node’s payoff. These payoffs
propagate to the children of the root node, which picks the one with the highest
payoff as the recommended move.

3 Ultimatum Conundrum

We'll illustrate the problem with a simple example. We assume Bob wants to
buy a pair of shoes from Sally. The contract template has three sections, shoe
to describe the product, delivery to describe delivery options, and payment for
payment terms. The shoe vocabulary has two attributes style and color; the
delivery vocabulary, only the delivery delay, with a delay of 0 denoting that
Bob will take the merchandise with him. The payment section has attributes
for price and payment method. The tree strategy treats the two range-valued
attributes, delay and price, as continuous.
Sally’s utility function is

VSally = 7t/5+bw+bl+bbl+bbr+3(2bca+bcr)+2(b[0,0]+b[1,oo])+H(P7100)/100a

(1)
where ¢ is negotiation time , b, = 1 if attribute value z is in the complete deal
and 0 otherwise. Here w and [denote wingtips and loafers, respectively; bl and
br, black and brown; ca and cr, cash and credit; [a, b] delivery delays between a
and b. The function H(z) = x if x > 0 and is —oo, otherwise. In this notation
the Bob’s utility is

VBob = —t/lO + 3[(3 — 2t/5)bwbbl + (2 — t/lO)blbbr] + bcab[0,0] + bcrb[l,oo]+
2(by + by) + by + by + H(300 — P)/25
(2)

In addition, each party has a set of parameters describing how range-valued
attributes will be handled. These parameters specify the player’s first and final
offers, as well as the minimum and maximum acceptable concessions.

Price Delay
Negotiator Bob Sally Bob Sally
First 50 100 3 2
Final 250 300 0 0
MinInc 53 -57 -2 -1
MaxInc 151 -133 -3 -10

Bob’s strategy for range-valued attributes is to make the minimum concession.
Sally’s strategy is more complex. She tries the maximum increment from both
ends. Although it seems strange for the seller to raise the buyer’s price offer,
nothing in the protocol prevents it.

Bob makes the first offer, namely,

shoe color ['black’, "brown’]
shoe style ['wingtip’, ’loafer’]
delivery delay [0, 1]
[
r

payment price 150.0, 250.0]
payment method check’, ’cash’, ’credit’]

The first test of the tree strategy is based on the assumption that the user of
the strategy, Sally, knows Bob’s utility function. The resulting recommendation

shoe color ['black’]

shoe style [wingtip’]
delivery delay [0, O]
payment price [250 0, 250.0]
payment method ['cash’]

is the ultimatum that has the highest utility for Sally, 13.1, that also as positive
utility, 12.4, for Bob. This deal corresponds to the point marked “Efficient
Deal” in Figure 1. At first, we found this recommendation surprising. After
some thought, though, we recognized that the rules used are equivalent to the
bargaining game [6], which has an ultimatum as its Nash equilibrium.

We know intuitively that making an ultimatum is not always the best strat-
egy. Such an offer is particularly bad when there is substantial uncertainty
about the preference of one’s opponent or his assessment about you. In this
case, leaving room for negotiation may allow one to obtain information about
this uncertainty.

The original tree strategy indeed ignores the issue of uncertain and potential
information gains from negotiation. If one does not update one’s belief, an ulti-
matum is optimal because there is nothing to gain from waiting. The problem
is how to modify the strategy so that we get more “reasonable” offers. We could
play many times, a number of times unknown to the players, or a number of
times determined at random during the play. Game theory shows that the Nash
equilibrium for all these variants is still an ultimatum [1].

One unrealistic aspect of the first test is that we assume Sally knows Bob’s
utility function. Hence, we modified the test so that Sally only had an estimate,
expressed in Equation 3,

Viuger = —t(1£0.1)/10 4 3[(3 — 2¢/5 £ 0.1)bybp; + (2 — /10 £ 0.1)byby,]+
(1 0.2)[beabjo,0) + berbii,o0)] + (2 £ 0.2)(by + by)+
(1£0.2)(by + by) + (H (300 — P) £ 10.0) /25,
(3)

where we are assuming the estimate is represented as the mean and standard
deviation of the contributions of the individual terms. The tree strategy recom-
mended an ultimatum that Bob was likely to accept, the same deal as before in
this case.

In retrospect it is clear what is happening. Both players’ utility functions
include a time penalty that represents the cost of the negotiation. This cost can
be either the direct cost of the resources consumed or the opportunity cost of
the delay in reaching a deal. A deal has a particular value to Sally, and she has
a mean and standard deviation of her estimate of the deal to Bob. However,
there is nothing in these utility functions that accounts for the path used to
reach a deal. Hence, a deal reached early is always worth more than the same
deal reached late. The earliest way to reach a particular deal is to make an
ultimatum. Even without a time penalty, the players will be indifferent to a
particular deal reached earlier rather than later, making an ultimatum offer the
equilibrium strategy.

4 Resolution

Clearly, the tree strategy won’t make a good business tool if it recommends an
ultimatum. The problem, then, is to identify the factor in the strategy or the
rules that makes an ultimatum the Nash equilibrium. One approach is to use a
heuristic of some sort. We could penalize offers the more they narrow the deal
space. Alternatively, we could increase the computed value of nodes deep in
the tree. These solutions are unsatisfying because the heuristics will most likely
need tuning for every situation.

There is a piece of information we’ve implicitly assumed is available, the
other player’s constraints. Sally may know quite accurately what Bob will pay
for loafers. However, she may not know that Bob is shopping for formal attire
and that only wingtips will meet his needs. When we include this uncertainty,
the tree strategy makes what appear to be reasonable offers.

We can include uncertainty in the other player’s constraints without intro-
ducing any free parameters. Consider an offer by Sally representing an ultima-
tum minus 1, an offer with only two legal counteroffers, each representing an
ultimatum. Clearly, this offer is at least as acceptable to Bob as either of the
possible outcomes. Further, if Sally just made this offer, the probability that it
is acceptable to her is 100%. Hence, the probability that the offer is acceptable
to both Bob and Sally is

P=1-(1—-P)(1-P) (4)

where P; and P, are the probabilities that the first deal and second deals,
respectively, are acceptable to Bob. Hence, the expected payoff of this offer to
Bob is up(P;)P, where j is 1 or 2 depending on which deal Bob prefers.!

LOther factors have been omitted for clarity.[3]

When we include the uncertainty in the other player’s constraints in this way,
the tree strategy makes reasonable counteroffers. Our test used as estimates

Term Probability
t—tyg 0.3
buwbpi V biby, 0.2
b0,010ca V b[1,0010cr 0.5
by 0.8
by 0.8
by 0.8
by 0.8
price < 300 0.9

where the second column is the probability that the deal will be rejected if
that term does not appear in the offer. In the case of the time, the probability
represents the likelihood that the current time misses the deadline, 4. In the
case of price, the probability represents the likelihood that a price exceeding the
threshold will be rejected.

In our example, Sally’s first counteroffer is

shoe color ['black’]

shoe style ['wingtip’]

delivery delay [0, 0]

payment price [250.0, 250.0]

payment method [’check’, ’cash’; ’credit’]

which she estimates has a 91% probability of being acceptable to Bob. Other
possible offers have the same or higher predicted payoff to Sally, but the prob-
ability that Bob will accept them is lower.

Bob uses a strategy that makes the smallest possible change, so he eliminates
paying by check. Sally’s last move is forced by the protocol; she selects cash
as the payment method. The final deal is the same one reached previously, but
in four steps instead of two. Hence the payoff to Sally is 12.7, instead of 13.1.
Notice that we now have a quantification of the cost of Sally’s lack of knowledge
of Bob’s constraints; she could get 0.4 additional utility with full knowledge of
what Bob wants. Sally’s estimate of the payoff to Bob is 9.8 &+ 1.5, with a 75%
probability that the deal is acceptable to him.

5 Summary

We have developed a software algorithm to play a specific bilateral offer-counter-
offer bargaining game. This game has one special feature differing from the
traditional version. In our game each offer is a subset of the offer space, not
a point in that space. Furthermore, each successive offer is restricted to be a
subset of the previous offer. Whenever a player offers a single point in the offer
space, it is an ultimatum. The other side has only two choices: accept it or

reject it, which leaves the players with no deal. This process mirrors many real
world situations [5].

The software algorithm was adapted from tree-search algorithms found in
chess programs. Experience has shown that this approach performs better than
other schemes, such as expert systems or neural networks [2]. Of course, the
adaptation involves estimates of the opponent’s utility and constraints as well
as the need to handle continuous moves, which means that other approaches
may reach better deals.

If we assume the utility functions of both players are common knowledge and
that there is a time cost to negotiation, then this algorithm will correctly arrive
at an ultimatum in its first move. However, if there is uncertainty about whether
the other side will accept the ultimatum, then the algorithm will propose non-
ultimatum offers to reduce the chances of rejection. This effect can also be
interpreted as an implicit form of learning. With this addition the algorithm
behaves in a much more ”reasonable” manner.

Serendipity played an important role in determining that uncertainty in the
other party’s constraints was key to producing reasonable offers. Since the size
of the tree grows exponentially with the number of terms in the negotiation,
most tree strategies truncate the tree and use estimates of the values of non-leaf
nodes. Indeed, the software we developed has code to compute these estimates.
Fortunately, we chose to debug the program first on examples small enough to
build the complete tree. Had we not made this choice, we would not have seen
that the strategy always recommends an ultimatum.

References

[1] K. Binmore. Fun and Games: A Text on Game Theory. D. C. Heath and
Company, Lexington, MA, 1992.

[2] F.-H. Hsu. Beyond Deep Blue. Princeton Univ. Press, Princeton, NJ, 2002.

[3] A. H. Karp. A game tree strategy for automated negotiation.
Technical Report HPL-2003-154, Hewlett-Packard Laboratories, 2003.
http://www.hpl.hp.com/techreports/2003 /HPL-2003-154.html.

[4] A. H. Karp. Rules of engagement for web service negotiation.
Technical Report HPL-2003-152, Hewlett-Packard Laboratories, 2003.
http://www.hpl.hp.com/techreports/2003/HPL-2003-152.html.

[5] H. Raiffa. The Art and Science of Negotiation. Harvard University Press,
Cambridge, Mass., 1982.

[6] A. Rubinstein. Perfect equilibrium in a bargaining model. Econometrica,
50(1):99-109, 1982.

