Jump to content United States-English
HP.com Home Products and Services Support and Drivers Solutions How to Buy
» Contact HP

HP.com home

Technical Reports


HP Labs

» Research
» News and events
» Technical reports
» About HP Labs
» Careers @ HP Labs
» Worldwide sites
» Downloads
Content starts here

Click here for full text: PDF

Efficient optical quantum information processing

Monro, William J.; Nemoto, Kae; Spiller, Timothy P.; Barrett, Sean D.; Kok, Pieter; Beausoleil, Raymond G.


Keyword(s): near deterministic linear optical gates; continuous variables probe modes

Abstract: Quantum information offers the promise of being able to perform certain communication and computation tasks that cannot be done with conventional information technology (IT). Optical Quantum Information Processing (QIP) holds particular appeal, since it offers the prospect of communicating and computing with the same type of qubit. Linear optical techniques have been shown to be scalable, but the corresponding quantum computing circuits need many auxiliary resources. Here we present an alternative approach to optical QIP, based on the use of weak cross-Kerr nonlinearities and homodyne measurements. We show how this approach provides the fundamental building blocks for highly efficient non-absorbing single photon number resolving detectors, two qubit parity detectors, Bell state measurements and finally near deterministic control-not (CNOT) gates. These are essential QIP devices. Notes: Kae Nemoto, National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda- ku, Tokyo 101-8430, Japan. Raymond G. Beausoleil, HP Labs, 13837 175th Pl. NE, Redmond, WA 98052-2180, USA

10 Pages

Back to Index

»Technical Reports

» 2009
» 2008
» 2007
» 2006
» 2005
» 2004
» 2003
» 2002
» 2001
» 2000
» 1990 - 1999

Heritage Technical Reports

» Compaq & DEC Technical Reports
» Tandem Technical Reports
Printable version
Privacy statement Using this site means you accept its terms Feedback to HP Labs
© 2009 Hewlett-Packard Development Company, L.P.