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Complex systems often behave in unexpected ways that are not easily
predictable from the behavior of their components; this is known as
emergent behavior. As software systems grow in complexity,
interconnectedness, and geographic distribution, we will increasingly
face unwanted emergent behavior.

Unpredictable software systems are hard to debug and hard to manage.
We need better tools and methods for anticipating, detecting, diagnosing,
and ameliorating emergent misbehavior. These tools and methods will
require research into the causes and nature of emergent misbehavior in
software systems.
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Abstract

Comple sydens oftenbehaein unexpectedvaysthat are noteasly preditable
from the behavor of their componers; thisis known asemergentbehavior. As soft-
ware sydgemsgrow in compleity, interconnectednes and geograplt distribution,
wewill increasigly faceunwantedemergentbehavior.

Unpredictable software systemsare hardto debug andhardto manageWe need
beter tools and methodsfor anicipating, detectirg, diagnogng, and ameliorating
emegentmisbehavior. Theseools andmethodswill requre reseachinto the causes
andnaure of emergentmisbehaior in softwaresystems.

1 Intr oduction

Most systemsresearchpapes describe new or better waysto do things. This should not
besurpising; computeiscienceis primarily anengineeing sciencenotanatural science,
andso our focusis usuallyon innovation, not on undestandng theworld asit is.

Sone OSresearcherkawe, however, looked at undestandng andpredicting system
behaior, ratherthandesgningandoptimizing it. Why this shift in emphasi8 Onecould
arguethatwe have perhapsnnovatedtoo freely; the world seens not to urgently need
anotherOS kernel, or anotherdistributed shared memay protacol. And mostof our
optimizationsare eithertoo minor or too disruptive to influencewidegreadpractice.

But anotherexplanaton for the shift lies in the compleity of the sydems we build.
Thebehaior of asimple systemis ofteneasyto understandasthe sumof the behaior of
its conmponentparts; goodengneeing practiceis to designcomponentsvith well-defined
andreliable behaviorsfor precily this reason.As systemsbecomemorecomple, this
reductionistway of undestanding themfails; they behae in waysthat cannotfeasbly be
predicted from understandingf theindividual parts, or were notexpectedy the system
designewho assembledhe pats, or both.

Theterm“emeigentbehaior” (or sometines“emergence”or “ensenble behaior”)
hasbeenusedto de<ribe how conplex behaiors ariseout of simder ones

Emepgent behavioris that which cannd be predicted through analyss
at any level simpkr than that of the systemas a whole Explanatons of
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emegence Jike simplificatiors of compleity, are inherentlyillusory andcan
only be achieved by sleightof hand This doesnot meanthat emegenceis
notreal. Emergentbehaviae, by definition,is what's left after everything else
hasbee explained.— Geoge Dyson[12,p. 9]

Dyson's defnition is not the only one, andit oversimplifies; for example, how does
onedefinethe boundaies of “the systemasa whole; whennetworks comect virtually
all of our sygems at somelevel? However, this definition captuesthe cental concept.

Emegentbehaior canbe beneficial. (Individual antsare dunb; ant colonies are
smarter) But it is not alwaysbeneficial. For example, stock maiket panicsarea form of
unwantedemegentbehaior in whichtheirrationalbehaior of many individualinvestos
makes thingsworse for everyme. London's newish Millennium Footbidge hadto be
closedafter “unexpectedexcessse lateralvibrations” onits openingday, whichwere due
to an unexpectedsynchronizationthat built up betweenthe footfalls of pedestansand
themotion of thebridge[11].

| will usethetem “emergentmisbehaior” * to focuson problemattc behaior. | ex-
cludethe prodem of intentionally maliciousmisbehaior from this definition; although
attaclerscould exploit emepgentbehaior, thatshould be corsidered asa separatgprob-
lem. This paperalsowil | alsoavoid discussingsituationgnvolving gametheoly, in which
multiple non-maliciousactoss are trying to exploit their knowledgeof eachother's beha-
vior; thisis atopic for futureconsideration.

Evenwhen emegentbehaior is notinherentlybad, it is (by Dyson's definttion) un-
predictable,andunpredictabilty is bad in many conputer systemcontexts — especially
whenit comes to pefformance.lf onecannotpredictthe usefulbandwidh of a network,
or the numberof trans&tions persecondfrom a setver, this makesit hardto designand
managecomputer systems While emergentbehaior is not the only cau® of unpredict-
ability, it is a cental challenge for systemgesearcheralVe are responsibléor desgning
mary of the mechanismshatmaintainthe peformance’ of the systemasawhole] both
onsingle conmputersandin distributed systems.

This paper will also ague that we needbeter tools and methodsfor anticipatirg,
detectingdiagnosingand amelioratng emegentbehaior. AlthoughDyson's defintion
suggestghat suchtools and methodswill alwaysbe imperfect, that shoud not stop us
fromtrying.

2 Examples of emagent misbehavior
To motivatetherest of this paper this sectionpreseits a few examplesof emegentmis-

behaior, in both noncomputerand computer sydemns. Other exanples are scattered
throughoutthe paper

1Theterm hasbeenusel beforeby others; for exanple, Nisley [30].
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2.1 Non-computer exanples

On the first day that the Millennium Footbidge was opened to significant pedesrian
traffic, “unexpededexcess/e lateralvibrationsoccured,” causing‘a significantnumber
of pedesrians... to have difficulty in walking” [11] The bridge hadbe closel until
the engneersanalyzedandfixedthe prodem. The desgners hadfailedto anticipatean
effect that could causethe synchronzation of individual footfalls, bath with each other
andwith the bridge's naturalswayingfrequency:pedesrianson a swayingsurfacetend
to synchonizetheirfootstepswith the sway, evenif theampgitude is initially quite small.
The bridge would not have behaed in an unexpectedway hadnot the pedesriansalso
shavn unexpectedbehaior.

The Millennium Footbiidge problemis somevhatsurprising, sincewe expectbridge
designerdo understandhis generakind of problem. In paricular, theinfamousfailure
of the TacomaNarrows Bridge, four morths after it openedn 1940, mustsurelybewell
known to every bridge designerin theworld [36]. Thatbridgefailed not becauset was
too heary, but beausein high winds its shapegeneatedenoughlift to induce major
oscillatiors, andit wasinsufficiently resistantto torsionalforces.

Soeven in awell-regubted engineerig professionwith decade®r centuriesof ex-
periencewith unexpecteddynamic failures,and with regular useof computemmodelling,
modern desgnssuchasthe Millennium Footbridge still suffer from emergentmisbeha-
vior. Thatshouldkeepushumbk.

The civil engineerinditerature shovs an awarenes of the possibility of emegent
behaior onthepartof peopkwho usetheirsydens. Forexample,“[automotietraffic] is
emegentbehaior, i.e. thereault of theindividual decisionf drivers, pedesrians,traffic
contollers and other individuals™ [13]. Mary traffic jams are emergent misbehaior;
traffic slows or stopsevenwhenthereis noinherentimpedmentto its flow.

2.2 Computer hardware examples

We tendto treat disk drives ascomponerd that interactwith eachother if atall, through
storagecontmllers and storage protocolssuchas SCS. In large installations, however,
large numbes of disk drivesaremountedonracks.It turns out thatthe performanceof a
drive canbe ad\erselyaffectedby the vibratiors causedy seekadivity on neighbomng
drives|[2]. Disk drive manufacturershave learnedto engineer‘enteiprise” drivesto resst
this behaior, which is onereasonwhy they costmorethanconsumer-marketdrives

2.3 Examplesfrom computer networking

The“Etherret captue effect” is a clearcaseof emegentmisbehaior [33]. Thecapture
effect createssignificantunfairnessn certainCSMA/CD ernvironments.

Considerthe cas of a short LAN with exactly two hogs A andB, both with a lot
of paclets to send,when a third host sendsits last padket for a while. A andB will
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simultaneously detectthat the channelis now free,bothwill send,andthe collision will
causebothto calculatea randombacloff.

Suppse that A choose a smallerbackof than B. Then A will send, after which
both hods againseethe channelbecomefree,andboth sendagain, resultingin another
collision. However, sinceA “won” thefirst collision, its collision counterhasbeenrese,
andthe expectedvalueof B'srandombacloff is largerthanA's. SoA will probablywin
again,and B's chancegetprogessively worse.

Thisproblemwasnot seenurtil Ethernehaidware hadbeea in significantconmercial
usefor mary yeas. It only appearednceEthenetchipswerefastenaighto fully exploit
thetiming allowed by the specification.Thus,the captue effect appeaednot becaus®f
a “problem” with any of the componentsbut becausehey wereimproved (in this local
seng)to anoptimal point. Thesolution wasto require a hostto insett alittle extra delay
if it might bethewinning hostin a capure-efectsituation[33].

Routersperiodically exchangerouting protocol messiges. Onewould hopethat, in
a large network, thereis afairly constantackground level of routing protocol messige
traffic. However, Floyd andJacobsorshowvedthatin a network with “many appareny-
independenperiodic proceses... thes processg caninadwertently become synchon-
ized” [14] Thetransitionis not gradualbut abrupt,andis therefore hardto anticipateif
oneis notcarefuly lookingfor it.

Two hosts exchangingdata usng TCP canexperiencea badinteractionbetweerthe
TCP sender'sNaglealgoithm andtherecever s delayed-acknavledgnentalgoiithm; the
interactionis exacerbatedby the traditional desgn of the netwok stack[28]. The prob-
lemis notjustacademicusersregulaty encouter this, espeally whenusingnetworks
whosemaximumpacketsizeis largerthanthatof Ethernet.

2.4 Examplesfrom distrib uted systems and operati ng systems

Figure 1 shaws the structue of a simple multi-tiered distributed applcation, with nu-
merous clients spreadthroughou the Internet,a front-end sener, a load-balance, two
applicaton seners,andtwo databasseners. The overall applicationinvolves collecting
periodic measuremerrepots from the clients doingsome processg at the application
seners,andthenstoling the processedreportsin thereplicated database.

Theloadbalanceiin this sydem hastwo jobs: it spreadhe workload evenly among
the available application sewvers, andit detectsthe failure of an applicationsener and
stopssendng it work. Theload balancerdetectdailure when anapplicationsener fails
to respondo arequestvithin a cerin threshold latency(timeout).

Supp<e thatthe systemappeardo be working perfectly whenit is first putinto ser
vice. However, asmorths go by, the databas latengy increasesperhapgheindex effi-
cieng/ getsworseasit gets larger, or perhapghe working set startsto exceedthe sizeof
the database’' cache. Supposealso that the load balancemasbeen configuredto usea
relatively timeoutfor detectiry thatoneof the applcationservers hasfailed.

At somepoint, the systemstopsrespondingo requests. The databasdatencyhas
increasedto the pointwherethe application senersare no longerrespondingo the load
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Internet with lots of clients
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Figurel: Exanple multi-tiered distributed system

balancewmithin its configuredtimeout, andthe load balancer endsup declaringbath ap-
plication senersdead.In avariant of this problem,theloadbalanceialternatebetween
applicaton seners;aseachseveris forcedto hande thefull load,its lateny exceedghe
timeout,while theother nowv unloadedsener appearso recover.

Clearlythesydem asawholeis misbehaing. However, noneof thecomponerg have
failed,per se Onecould arguethatthe databassenersshould not slow down overtime,
but this could be hardto guarantee. Or one could argue that someonechosethe wrong
timeoutfor theload balancerbut thaterror might not have beenobviouswhenthe system
wasfirst teded.

Notethatthis exanple is simplified andhasbeenconstuctedfrom severalreal-world
examplegwhich cannad befurtherdesribedfor reason®f confidentiality).

Realers shouldbe ableto seeotherwell-known operatingsydem problems,suchas
priority inversion anddataraces,asexamplesof emegentbehaior.

2.5 Complex behavior in more complex systens

While the focusof this paperis on emegentmisbehaior in comgex systemsmary of

the examplesshav that emergentmisbehavior can happenn extremelysimple systems.
For exanple, the Etherret capture effect andthe interactionbetween TCP's Nagle and
delayedACK algorithms both can arisein two-computersystemswith trivial applica-
tions. Perhapsthe bestexampleof a simplesystemexhibiting complex behavior is John
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Conway's gameof Life [16], in which threesimple rules govem cellular automataon
agrnd. It is nearly impossible to predictthe long-termbehaior of even a smallinitial
configurationin Life.

If we cannotavoid unexpeded behaior in suchsimple systemswe are very unlikely
to avoid it in complex computersystemsAnd while emegentbehaior might be“fascin-
ating” in thegameof Life, it is usually undesirable in compuér systems.

3 Relatedwork

In 2001, Steven Gribble argued“aging a seemirgly common desgn pardigmthat at-
tempsto achieve robustnes by predictirg the condiionsin which asystemwill opeate,
andthencaretilly archieding the systemto operatewell in those(andonly those) con-
ditions’ [17]. Gribble's obsewvationsand conclusionsoverlap consideraly with mine,
but his proposedsolutionsfocussedon “designstratgiesthathelpto makesystemsnore
robug in the faceof the unexpected. My focus(in the following sections)s on gain-
ing betterundestanding of emepgent misbehaior in comple software sygems, which |
believe is a prerequisitefor improved desgn stratgiesas well asimproved systemman-
agementoolsand technigues.

Gribble specificallyidentified the problem of “unpredictablébehaior in the face of
small pertubation’] or, more concis¢y, the “butterfly effect’ (The termis geneally
ascibedto EdwardLorenz) However, emepgentbehaior neednotnecesarilyarisefrom
asmallpertubation;it might be inhetent in the unpertubedbehaior of the systemasit
is designedr implementedFor example bothof usreferto theexampe of livelock (see
Section 5.1), but it is hardto seethis asanexampleof the “butterfly effect” (althoughit
doeshave a sudderonset).

Anotherwayto lookatthisis thatthebutterfly effectappliesto chaoic systemswhere
evenif onecandedice the cau® of oneinganceof misbehaior, onestill hasno more
ability to predictthe nextinstance In mary casesof emegentbehaior (includng most
of the examplesin Gribble's paper) it might well be passible to gain sufiicient insight
into a pag unexpectedbehaior to be ableto predictor preventit in the future. (In fad,
while many conplex systemsmisbehae, it is hard to argue thatall of thesesystemsare
actuallychaotic.) Therefoe, | believe theissueof “small pertubations”is a red herring,
leadingto excessve pessmism.

Othess have certanly lookedat theissueof emegentbehaior in enteprisesystems.
For example, the emphass on self-managerant in IBM's autononic computng vision
clearly leadsto emegentbehaior, aspointedout by Kephartand Chesg22], although
they focusedmoreon how to encourag€“design”) emergentgoodbehaior, ratherthan
to detectdiagnoseor prevent emegentmisbehaior.
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4 What is/isnot emea gent misbehavior?

A concepsuchas® emergentmisbehavior” runstherisk of beingappliedbothtoo broadly
(“everything canbe seenasemegentbehaior”) andtoo narrowly (“that's notemepgent
behaior, becaus | canexgain it asa simple, deternmnistic proces®. So in order for it
to beusdul, we needsometestfor what constitutegemegentmisbehaior andwhatdoes
not.

Giventhe defintion of emergentbehaior asthat“cannotbe predictedthroughana-
lysis at any level simpler than that of the sysem asa whde,” we can easly describe
certainkinds of misbehaior thatareclealy notemergent:

e Single-comporent bugs that break the whole sygem: If a critical component
of the sygem simply stopsworking, one expectsthe systemto fail, unless it is
designedo suwive conponentfailure.

¢ Inherently inefficient algorithms: Some algorithmic choicesare predictablyin-
efficient. For example,areplicatedfle systemthatcontactseplicas seriallyrather
thanin parllel will likely have sub-opimal performance. One could make this
predictionwithout knowing how thereplicasbehae.

¢ Insufficient resources: The primitive resouces (e.g, CPU, memoy, network
lateny and bandwidh, storagecapacity latengy, and bandvidth) inherentlypre-
vent the systemfrom perfaming at the required level. For example,you cannot
sendagigabyt of dataover a 56 Kbit/sec dialupin 1 minute.

While Dyson wrote that “emergent behaior, by defnition, is what's left after
everything elsehasbeen explined; it seenms unsatisactoryto defineemegent misbe-
havior simply asthatwhich doesnot fit into one of the categoriesof predictabé misbe-
havior. Approachingthe questionfrom the otherdirection,we cantry to list propertes
comnon to someor al instancesof emegentmisbehaior?:

1. Inherentlyhardto-predictbehaior: Evenwhen therulesgovernng a systems be-
havior arefully known anddeteministic, it canbe had to predicthow it behaes
asawhole;if the systemalsoincludesprobabiistic or nonlinear componentsor
its scaleis quitelarge, the predction problembecomesnuchhader.

2. Suddenchangesn behaior: If a sygem's behavior canchangerapidly between
modes with gredly different peformancecharacteristicsts behaior will be hard
to predict whenthe parametershat cortrol this mode switch are neartheir crit-
ical point. For example,the Ethenet capture effect arose“suddenly” whenchip
designersnanagedo reducethe inter-packetgap to the minimum allowed by the
specification.

3. Amplification of seemirgly minor behaiors: Prediction is easieiwhen we canig-
nore minor deviationsfrom expectedbehaiors, egecially in largerscde sydens
where we hopetheseindividual deviations areswampedby the law of large num-
bers. If, however, these minor deviations can be amgified through effects such

2StevenGribble suggesedthis apprach [18]
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asresonancer coincidencesthey canleadto unpredictablebehaior unlessthe
amplfication mechanismsareunderstood.

One hardto-resole quesion is whetherchaotic misbehavior is bestundestoad as
emepgent or not. If onedefinesa chaotic systemas onewhos global behaior, while
deteministic, is sosensitve to initial condtionsthat it appeardo be unpredictable then
it hassomeof the same charactestics as emergence. This might seemto clash with
Dyson's definition, which suggess that emegentbehaior is ultimately predctable if
undestood attheright scde. However, anoher definition of emegence:

I'll not call a phenomenonemepgentunless it is recanizableand re-
curring: whenthis is the case,l'll say the phenonenon is regular. That a
phenomenois regular doesnat meanthatit is easyto recanizeor explain.
—John Holland[20]

doessean to include chaoticbehaior, if it is recurrng. Also, Parunakand Vander
Bok [31] explicitly separatéemergentchaos’ from truerandomness

4.1 Inductivevs. deductive understanding

Pehapsa corvenientway to draw the line is to look at the bestappioachavailable to
undestandng the connectionbetweensystemdesign and systempeiformance. If one
canstartwith a descripton of a systems compnentsand configuation andrea®n for-
ward (inductiely) to accuratelypredictthe system$ behaior, thenthis behaior is not
emepent.

If onecannotuse induction,onemightstill be able to work from obsevatiors of the
sydem's behavior andreasonin reverse(deductvely) to infer what actually hgppened,
oncesomethingdoesgo wrong. Thesesystemsexhibit emegentbehaior, andgiventhe
deductve inference,there might be some hopeof directly remaoving the causesof their
emepgent misbehaiors.

Finaly, there aresystemgfor example, chaoticsystemswhereevenin principleit is
impossibleto explain eitherinductively or deductvely exadly whatcaugsmisbehaior.
The® systemsalso exhibit emegentbehaior, but attems to fix their emergentmisbe-
haviors might be limited to finding waysto congdrain the sygem or to nudgeit out of
misbehaior, ratherthan diredly fixing theunderlyingcause

Deductvely-understandablemegentmisbehaior is the mog intereding kind, be-
causeoncewe undestandwhatcausesa particularmisbehaior, we canusuallyfix it.

5 A resarchagenda

Themainpointof this paperisto proposeareserch agenddo dealwith emegentmisbe-
havior in comple sotware systems,with aninitial focusontheoperatig sydem aspets
of theprodem.
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This agen@ parallelsonethathas beenproposedn the conext of distributedcontol
sydems for manufacturing systems,in a paperby ParunakandVandeBok [31]. Their
paperdescibedexampesof emegentmisbehaior in aspedfic domain, the use of auto-
matedwelding systems. Several of the ideaspreseted here are basedon their paper
somavhattransposedor thedifferentprodem domain.

Major issueson the proposedagendainclude:

1.

Creating a taxonomy of emergentmisbehavior: Whatgenerakindsof emepgent
misbehaior do we seein software systems?Experiencesuggets thatmany; if not
moast, kinds of emegentmisbehaior couldindeed be putinto a reasonablysmall
number of categyories, althoughit is not yet clearwhether thereis a large set of
possibleidiosyncratieemepgentmisbehaiors thatare had to cateyorize.

. Creating a taxonamy of typical causes We alsoneeda taxonomy of frequent

cause®f emepgentmisbehavior, tied to specificinstance®f the taxonomy of mis-
behaiors.

. Developing detedion and diagnasis techniques Given that emergentmisbeha-

vior is, amostby defnition, unexpectedpethapsthe key stepin deding with it
is to detectit. We should developtechniqiesbothto detectgenerickinds of mis-
behaior, basedon the taxonomyof misbehaiors, andto allow programmersand
systemmaintainersto look for applicationspecific misbehaiors.

. Develop prediction techniques Evenif emergentmisbehaior is inheently hard

to predict from first principles, that shouldnat keepus developingtechniqes to
predictit wheneer possible perhapgrom adwane symptoms.

. Develop amelioration techniques While it mightbeimpossble to fully eliminate

emegent misbehaior, it is certaily possibleto reducethe chanceghatit will oc-
cur, boththroughcareful systendesgn and throughgenerc techniqueshataddress
well-known cau®s.

. Develop teging techniqgues While improved detedion mechanims areusefulin

deluggng an undeplgyed application andin monitoring a deployed application,
most significantsystemsgo through a teding phas betweendelugging and de-
ployment.Onegoalof testingis to exposeproblens soonethanthey would appear
in real-life use we needtechnguesto probefor plausibleemegentmisbehaiors
during teding.

Ead of thesestepss coveredin moredetailbelow.

5.1

Crede an emergent misbehavior taxonomy

As afirst step,we neal to undestand generalcategories of emergent misbehaior in
softwaresystems.Thelist couldinclude:

e Thrashing: Competition over a multiplexed scarce resouce in which the cods

of switching beween the sharingpartiesdominatesthe useful work that can be
peformed. It is usdul to distinguishthis form of thrashingwhich could beavoided
throughbetterschedulhg or coordnation, from unavoidablecaseswherea system
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is simply underprovisioned for thetaskat hand.

Unwanted synclronization: A setof systemsvhosetime-varyingbehavior should
be uncorelatedinsteadendsup correlated. This meansthat resourceallocatiors
basedon statisticalmultiplexing canfail. (The routingimesagesynchonization
describedy Floyd andJacobsor{14] andtheMillennium Footbidgeproblem[11]
both into this cateyory, asdoesthe possbly aparyphal story of municipal water
systemdailing whentoo manypeopleflushtheirtoiletsduringa commercialbreak
in apopularTV program.)

Unwanted osdllati on or periodicity: A systemoscillatesbetweerstatesbecaus
of anaccidentabr pootly-designedeedbackoop betweermultiple conponents.
Parunak and VandeBok descrbe an exampk from a colledion of spotwelding
robots[31].

Deadlock: Progressstallsbecaus®f a circularsetof dependencieDeadlockcan
clearly resultin a systemwhereeachcomponentunctiors “correctly” except with
respectto an arbitrary protocolfor avoiding deadlocks andthey only reault from
theinteractionsbetweercomponents.

Livelock Thethroughmut of asydemdecreasepehapsto zero, astheinputrate
increasespag a ceriain point. Livelock differs from deadlockin that throughput
is redoredif the input rate decreases. Livelock canresultwhen a systemwith
mutiple componerg, eachof which is necesaryfor the completeprocessingof
areques givestoo much priority to one of the componentsand hencesstarves
anotherconponentas the systembecones satuiated[29].

Phasechange Thebehaior of a system changs radicdly asthereailt of anin-
crenmental changein somevarable. In otherfields, such asphysics, such sudden
changeganoftenbe modelledasphasechangesSomecompuer sydems canalso
exhibit phasechange. For example, ad-hoc wireles networks often hawe critical
threshdds, for local pamameterssuchas pernode power levels, that contiol cer
tain globalproperties, suchaswhetherthe network is maostly-connectear mosly-
disconnecte{l4].

As we developsystemsof largenumbes of relatively simde nodeqsuchasDHTSs,
sen®r networks, in addtion to ad-hocwirelessnetworks) wherethe nodesinter
actwith eachother ratherthanwith a global coordnator (e g., a Web serer), we
might seeadditionalexamplesof critical thresholds and densitieghatleadto pha®
changes.

Chaotic behavior: asdiscussé in Sectior4.

This taxonomydoesnot include “faults” or “componentfailures” In fact, noneof the
misbehaior examplesin this paperstemfrom componentfailures Their causesre in-
herentin the designor implementation of the system. Of course,a conponentfailure
couldtriggera manfedation of systemievel designfailure.

It might beuseful to arrangethis taxonomyinto a hierarchy ParunakandVanderBok
catgyorizethreekinds of emegentbehavior [31]:

1.

Systemsattractedo afixed,stablepoint (perhapsotthe desiredoperatng point)
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2. Oscillation
3. Chaoticoperatim

but these metacaegores might be specificto contiol sydems, andinsufficient for com-
plex distributed sygems. For exampé, we couldadd” sudderchangesn behaior.”

5.2 Creae ataxonomy of causes

Recognizingan instanceof emergentmisbehaior asa menber of oneof the catgories
listedabove is simply afirst step towardssolving the problem We also needataxonomy
of frequenttause®f emergentmisbehaior, tied to spedfic instanesof thetaxonamy of
misbehaiors.

For exampé, the ultimate caug of a thrashingproblem might be as simple as a
memay leak (causinga programs addess space to grow in a way that destrgs loc-
ality). It might be failure to perfam admissioncontiol, allowing too mary otherwse
well-behaed jobsinto a sygem with limited resouces. It might be an implementation
bug in a schedulingalgorthm, which in attemptingto avoid poor schedding dedsions
doesexactly the opposte.

For eath categoy from Section5.1, it should be possible to build up a list of
comnonly-occurring genericcauses. Thatlist thencanbe appliedin the searchfor the
causé€s) of a specificemergentmisbehaior problem. Such alist probablycannot be ex-
haustve — mary systemanight exhibit sui generisemegent misbehavior — but it could
still coveraconsderablenumberof cases.

Notethatbe@useemergentmisbehaior is anagect of anentiresystem, not of just
onecomponentmary or maost of the caugsin this list will thenselvesinvolve multiple
compaments. Forexampe, thecauseof therecevelivelockproblemin aninterrupt-diven
network stack[29] wastracedto the useof multiple, finite-lengh queuesn the network
protocolstack,alorg with thedecisionto give processingpriority to thewrong queue.

In the context of control systems,Parunakand VanderBokstatethat nonlinearty
causs emergentbehaior, andthat“[thred of the mostcomnon sourcef nonlinearity
arecapacitylimits, feedbacKoops andtempodl delay$ [31]. All of thesecaugsapply
to sotware systemsmore generally but there areothercausesof emegentmisbehaior,
suchas:

e Unexpectedresurce sharing: The systemdesignerassumedthat separateom-
ponens hadaccesto sepaateresources whenin fad theresourcesare sharecand
insufficient.

e Massve scale: The number of communicatingcomponentsn the systemis large
enoughto giveriseto complex globalbehaior, evenif individual compmentshave
simplebehaiors.

e Decentalized control: We generally value decentalized sydem desgns over
centalized ones even aswe recognze that centralizatbon often makesit easier
to implementand managea system. Hubeman andHogg [21] have provided a
theoketicalanalysis of how distributed sydems thatlack cental contols,andhence
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suffer fromincompkteknowledge anddelayednformation,canexhilt oscillatiors
andchaos

e Unexpectedinputs or loads: Many sydens reactbadly to unexpectednputs[27]
or unexpectedloads[7]. Not all such misbehaior is emegent. Remember
however, the point raisedin Section 1 thatit might be had to definethe bound-
ariesof “the systemasawhole,” andsometimesmplementorsdraw it too close to
whatthey are responsiblgor implementing.

Both Parurek and VanderBokand Hubermanand Hogg point out that delayis one
of the principle contributors of emegent misbehaior. Delay is inherentin distributed
andnetwokedsydens. While it might seemthatthe primary undesirecconequencef
lateny is simply thatthe systenmwill run slower, lateny might be evenmoreperniciots
in how it makesa sygem harderto understancandharderto control As Hubermanand
Hogg point out, delay (possbly aggraatedby incompleteknowledge as the reault of
mesgageloss)meanghatno single viewpoint canhave afully consistenandup-to-date
view of global sydemstate;thisis whatleadsto oscillatonsandchaos.

Delay also createsemegent misbehavior for more mundanaea®ns. For exanple,
sydem implementorsoften usetimeous to detectfailure. Choosng the right timeoutis
seldomessy; static choicesalmast alwaysfail sooneror later, andadaptive schemesre
hardto designevenfor relatively simple casesuchasTCPretransmis®ns

5.3 Developdetection and diagnosistechniques

Giventaxonomiesof emergentmisbehaiors and their causesywe canthendevelop tech-
niques to detectemergent misbehaior, and perhaps even to diagno® their causs. In
mary casesthis might be the best thatwe cando, if emegentbehaior is thatwhichis
inherently unpredictble.

To supportdetectionanoperatingsystem or distributed sygems infragructure could
montor its appications for generic paternsof behaior consistenwith thrashinglive-
lock, unwantedpeliiodicity, etc. This approacthasshavn succes, with techniquessuch
astheonedescrbed by Romeretal. for dynanic pagemapping[35].

ParunakandVanderBok describea numberof generalpumpos techriquesfor detect-
ing emergentbehaior in contol systemsbased on their division of cauges[31]. For
example,periodic behaior canbe deteded throughFourier analysis;similar techniqies
couldbeenployed by operatig systemsandtheir associatednanagemergystems.

The diagnoss prodem will be harderto solve. One appoachmight be to expose
the systemdesigners expectationgo the diagnosissystem.Patrick Reynads (with Janet
Wiener Amin Vahdat,myself, and several others)hasdevelopeda system,called Pip,
for diagnosingoehaior problems in distributedsydems [34]. In the Pip appioad, the
programner expresgsexpectations abaut systempeiformanceand causal structue, in-
cluding both local andpath-basedlobal expectatios A middlewarelayerthenmonitors
applicaton behaior (incdudingcommunicationbetweemodes)o detectviolatedexpect-
ations.This appioad buildson PerlandWeih' s “performanceassertian checking”tech-
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nique for parallel applications[32].

Note thatthe Pip approachdoesnot dependon the ability of progmammersto write
formal (and correct) specificatios, nor doesit realt in any proof of corectness We
expect programmes to initially createincorrectexpectatios, andthento evolve both
theseandthe distributedsystemimplemenétion, until thebehavior seemscorectandno
violations remain. Pip does not attempt to eliminate the trial-and-error approachpnly
to male it less painful, andto gently force proglammes to confront the possbility of
unexpectedbehaior.

Systemdlesignersanhelp the diagnosiseffort by including enaugh monitoring and
loggng thatdiagnosidools coud constrict aglobal view of systembehaior, and atlevels
of detil sothatunanttipatedbehavior canbe captued. Systemdesgners tendto resst
addingsuch“superfuous monitoring becauseof its added runtime cod, but the cods
of sygemfailure canbe even larger and cettainly less predictable. (The SpaceShuttle
programprovides an illuminating example: the Shutle was deplgyed for two decades
befae NASA decidedo use on-boad cameasto seethatfoamwasbreaking off. 3

Re@nt researchaimed at the developmentof playbacktools (for example, Re-
Virt [23]) and analysistools (for example, Pinpoint [6], Cohenet al. [8], and Pip) in-
creaseshe benefit of ubiquitousloggng. Perhapsasthe benefits beame morebroadly
acceptedas way to reducethe overall cogs of managing conplex sydens, the minor
opewtional costs of loggingwill becomanoreacceptabé.

5.4 Develop prediction techniques

In mary contexts, it canbe moreimportantto have predictableperformance thanto have
optimal pefformance If performance is predictabé but subopimal, one canbudgetfor
theanticipatednefficiency (especiallygiventhathardware costsare increasinglydomin-
atedby sydem admnistration cods). However, if peformanceis nommally optimal but
sometines unpredictablybad,the sysem owner might be forcedto planfor anarbitrary
worstcase.This, for exampe, would make it hardto seta competitive pricefor aservice
offering. Predictiontherefoe complenentsdetection;presumably onewould preferto
know abouta potentialproblem in advance notjustafterit hasstarted.

Peformanceprediction covers manyareas For example,if there are no contols on
theloadimposea on the sygem (e.g.,a Web sewver on the puldic Internet)thenit might
sufficeto predict the pattensof load. Butin mary casa, the ability to predictemegent
misbehaior could be quite useful.

Thevery conceptof “predictingemegentbehaior” might ssemoxymoronic, given

31t is unclear whether the prior decisian nat to usecamerasto look for foam problems was because
NASA wastrying to awid the extra weight of 1980s-intage caneras,or whether they were alreadyin
place but therewas insufficient downlink bandwdth. The latter hypothesis is suppated by a news repat
that the Columbia Accidentinvegigation Boardrecommaended tha thatNASA “make the shutle'son-board
cameras, which capureimagesof the externaltankafter separaton, available during theascent,rather than
justpost-flight That way, data may be usedto asessdebrs strikesor other axentanomalies earlier in the
process. [25].
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Dyson's definitionof emergentbehaior asinherentlyunpredictable. This appaentpara-
dox hastwo possble resoluions. First, Dyson's definition describedbehaior “unpre-
dictabk throughanalysisat ary level simplerthanthat of the systemasa whole” This
leavesopenthepossibilityof prediction techniquesthatoperateat thewhde-sysem level.
Secondwhile it might not be possble to predictspecificemegentmisbehaior, it might
still bepossble to predictthata systemcould be proneto someunspecifiedorm of emer
gentmisbehaior. Third, it might be possible to predictthe onset of seriousemegent
misbehaior from advancesymptoms.

Giventhatemegentmisbehaior might often not be the result of componentfailure,
traditional failure predictiontechniquessuchasthose basedon Mean Times Between
Failures(MTBFs) or faulttreesmight beinapplicable. MTBF datawould only beuseful
if sygemwide failureswereprimarily caugd by componentailures. One cannotbuild
afaulttreethatincorporateshe probability of anunantcipatedevent. JohnWilkes sug-
gestshowever, thatit might bepossibleio work backwadsfromabourd on misbehaior,
perhaps asimposed by a detectionmechanismto derive limits on the eventsthat could
provoke suchmisbehaior [37].

Onepossibleapprach to onsetpredction would be the creationof a corpus of “sig-
natues basedon obsered eventsleadingup to detectecemegent misbehaior in real
sydems. Whenoneor more such signatues are recognizedn a runnng system,this
couldseneasanindicatorthatmisbehaior is aboutto appearFor example, suppos one
doesa spectralanalysisof responsdimesat reguhr intervals. If the spectrumstartsto
include strongerfrequeng compnentsthanin the pag, this could indicatethe onsé of
oscillationbefae it becomefhiarmful.

Thecreaion of suchsignatureould beguidedby ataxonomyof cau®s,asdescribed
in Section5.2. Of couse this apprach cannotpredictall misbehaior, and might not
alwaysgeneatepredictionsfarin advanceof real problems.

Cohenet al. [9] descriked a technique basedon statisticalmodellingandinference,
that automattally extractssignauresfrom systemmetics, especiallyduring problem
events.Thesesignatuesareconstuctedsothatthey canbematchedagaing signaturegor
similar previous events;if the previous evens arelabelledwith diagroses,the matching
eventscan suggesadiagnogsfor a curentproblem.Sofar, they have only expemmented
with detectionof comporent failure or overload, notwith emergentmisbehaior.

5.5 Developamelioration techniques

In somecages,an emegentmisbehavior mighteitherbeimpossible to diagnoseor avalid
diagnais might point to a cau® thatcannd befixeddiredly. In thesecases,techniqies
for ameliorating or working aroundemergentmisbehaior might benecesary

For exampk, Floyd andJacobsorshav how theinjectionof someextrarandonmesin
thetiming of routing updatesanbreakup unwantedsynchrotization; they even“quanify
how muchrandonization isneessay” [14]. InterestinglyParunakandVanderBokalso
describénow randonizationin timing can solve problemswith defectve weldsfrom auto-
matedspot-weldhg guns[31].
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Similarly, althoud it is possiblein theoly to madify a network stackto awid live-
lock [29], in practiceonemight not have accesdo the source coce. In this cag, livelock
canstill be preventedby placingarate-limting box upgreamfrom the system(ssubject
to livelock; this box candiscardexcesive traffic soonenoughthatthe remaindercanbe
processedappopriaely by the protectedsystem.

Mary Baker[3] haspointedoutthatcivil, structual, andmechanicaéngineerstrive
to avoid suddenfailures.Their desgnsoftensacrifce efficiengy in favor of guaranteeing
gradual failure, which givestime to react, andin favor of makingit possibleto regu-
larly inspectfor signsof impendng failures. In ananalogos distributedsystemcontext
Maniatiset al. describechow their peer-to-peersystem explicitly usesrate-limting “to
prevent our adwersarys unlimited resourcesfrom overwhelmng the system quickly, and
integratedintrusiondetectionto preemptunrecwerablefailure” [26].

Gribble[17] suggeted severaldesgn strategiesjncluding the useof systematiover-
provisioning, admissioncontrol introspection and closedcontrol loopsfor adaptatio.
(However, expeliencesuchasrepoted by Parunak and VanderBok suggest that adding
contol loops might notsolve the emergentbehaior problem.Further, Brown andHeller-
steinpaint outthataddng autonation, suchasfeedbackcontol, to asimpler systemcan
itself leadto unexpectedoehaior [4].) Gribblealsosuggestedesigningsystemshatex-
pectfailures andrecover rapidy from them,ratherthansimply trying to designsysens
thatneverfail.

Geoge Canded5] points out that overall system dependabily canbe reducedby
compaents that behave unpredictab}, especiallywhen buggy, stresed, or compran-
ised. He suggestghat sydem predctability can be improved by either by preventing
unpredictedcompment behaior from propagatingthroughout the system, or by pro-
tectingcompmentsagainstunexpectedinputs. For example,“softwarefuses (suchas
firewalls) drop out-of-boundsinputsbefore they reacha vulnerablecomponent” output
guads’ detectappaent compmentfailure andstop the suspectmodule,“thus coercing
Byzantineinto fail-stop behaior.” However, Cancdka's proposal assumeghat misbeha-
vior is apparenat eithertheinput or the outputof acomponentsysemwide (emegent)
misbehaior might eitherbeinvisible atthis level, or might be sopewasve thatsoftware
fusesor guadswould effectively shut down the entiresystem. A defens againstemer
gentmisbehaior is more likely to takethe form of “damping” (to slow the propagation
of problems)or “clamping” (to limit the amountof damagehey cancause).

Thegaal of muchdistibutedsygens researchhasbee the creationof conplex sys-
temsthatalwayswork, both through fundanental desgn principles (e.g.,two-phasecom-
mit andreplicatian) andthroughbetterengineerig (e.g., modelcheckirg andtype-safe
languages)However, the challengeof emegentmisbehaior is that this “correctby con-
structon” goal, while a worthy pursuit, probablywill never be achiezed, and we will
alwaysneedamelioationtechniques.
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5.6 Developtesting techniques

No matterhow good we are at developing techniqes to avoid, diagnose, repar, and
amelicateemepgentmisbehaior, the compleity of ary givensituation coud well con-
foundtheseefforts. Onemight believe thatanemepgentmisbehaior prablem hasbeen
solved,whenit hasonly beendriventenporarly into hiding.

Therefore we will needtechniqueso testsystemsfor emegentmisbehaior. Testing
for compkx systemsalwaysposschallengesFor example, ArmandoFox [15] suggets
thatthe condiionsthatleadto emegentmisbehaior arenot alwaysknowableor anticip-
atedduring testing.

A solutioncouldincludetechniquegor reproducingpreviously encouteredemegent
misbehaior, or ratherthe stimuli and configurationsthatled to them. It might also be
possibleto generatéhe conditionsfor emegentmisbehaior autonatically, basedn the
taxonany of causeslescibedin Section5.2.

Otherchallengs includethe needfor autanatic detectionof emegent misbehavior
(see Sedion 5.3),becaus extensve testingprotocolsmustbe autonmatedandcannotrely
on humango detectf atesthasfailed.

6 Potholesontheroadsto the future

Several computercompaniedave articulatedambitiousvisionsfor thefuture of complex
compuing sydems, motivated by the increasinginability of unassstedhumans to man-
ageor conprehendthesesystems. Thes visions will have to corfront the problem of
emegent misbehaior. Thisis notaninsurmountabé problem,but it is aninevitable one.
For exanple, IBM hasarticulated a vision of autonomc computing in which sys-
temsself-configue, self-optimize, and self-heal [22]. HP hasarticulatedan Adaptive
Entemprisevision, in whichtheIT environmentsuppats rapid changesn busness-leel
stratgies andtactics[19]. In mary ways, thesetwo initiatives (and thosefrom other
companes) overlap,but they differ somewhatin emghass.
Onepotentialconcermboutself-optimizing andself-healirg systemss thattheyadd
additional automatedcontrol loops to exsting systemswith conplex behaior. Thes
extra contol loops might themelvesleadto emegent misbehaior, especiallyduring
self-heding actiors, which might notbeaseasly tededasthoseusealin normalsituations.
(Conversely, ArmandoFox points out[15] thattheuse of contiol loopsinherentlyexposes
measurementof importantagects of systemstate,which could be used bothto detect
contoller saurationandaspartialinput to a detecto for sysem-wide misbehaior.)

6.1 Service-Orientad Architectures

Marny companiegincludingHP, IBM, Microsoft, and others) are eagely adoptng the
conceptof Service-OilientedArchitectures (SQAS), in which a set of patentially inter-
changeableomponenservces(self-containedsoftwareagentshat interactvia network
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comrmunication)canbe composedapidly to addess novel IT requirements.Thevision
assimes thatimplementatn detailsof the individual sewvicesare irrelevantto the user,
andthus SQAs reducethe explicit complity of a compsed apgication. However, as
Gribble pants out, “low-level interactionbetweenindependentlyuilt componentsan
have profound implicationson the overall behaior of the system” As aresult,an SQA
applicaton might still exhibit unexpectedcomplex behavior.

The SQA vision of the futureseemso bebasdonthreeconcepts

e Construction by composition Comple systemscanbeconstrieted by composing
well-defined well-documentedandwell-teded comporents (services).

e Correctnessby construction: Eachcompositionstepis simple enoughthatit is
easyto besure thatthestepmeds its specification, either by informalinspectioror
by formal verification.

e Loosecouwling via networks: componenservicean bein adminstratively and
geogaphicallydistinctplaces.

Thes conceptsave obvious benefis, which is why SOAs areattractve. However, the
“correctnes by constuction” property might be valid only locally, rather thanglobally
throughouta complex system,oncethe systemhasbeencomposedut of independent
pieces.The “compositionassimption” —thatonecanbuild asygem with adesiredbeha-
vior knowing only the behaiors of the components-ignoresthe possbility of emegent
behaior.

In the Millennium Foatbridge cas, for example, the bridge itself was a caretilly
designed‘component” (and the implementationdid, in fact, med the desgn specifica-
tion). The peoplewho walk on it were also thoudht to be reasonablywell-understood
compments. Theinteracton betwee the bridge designandlittle-known aspectof hu-
manbehaior wasnot expectedhowever. (The tendeng of peopleto synchronizetheir
footdepswith small lateral motiors had been repoted before, but without arny useful
guantfication[11].)

SQAs will probablyintroducedistribution into mary applcations that are currently
relatively integrated. As discussedn Section5.2, the useof networks, especiallywhen
they spansignificantdistancesimayincreas thelikelihoodof emegentmisbehaior, by
addinglateng to the inter-serviceinteractions.

6.2 Declarative approades

Colemanand Thompson10] desribe the useof Model-Bagd Automation(MBA) for
themanagemenrdnd constructionof IT servces. Also, se€[19, page9| for ade<ription
of theuse of MBA for for application congruction. In contastto the useof imperatve
scriptsfor managingsygens, MBA usesdeclaative modelsfor compnentsand their
compagaition. The expectedadvantageof a declagtive appioach,asopposedo the tradi-
tiond procedual approachis thatdesignersn theory needspecifyonly whattheywant
done,nat how to doiit.

The pamadoxof the declaratve appioachis that, while it shouldbe a moredirectway
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to expressthe desied goals,it canbe quite hardto predictthe reault of a large number
of rules This canleadto the declaratve analogof “spaghetticode’; wherethe declar
ative programner haslayered rule uponrule in anattenpt to elicit the desiredoehaior,
whereasa procedual programmerwould moredirectly tell the systent do it thisway”
Thusthe declaative approachrunstherisk of allowing the constructio of comple
model-driven systemswhosebehaior is both unpredictableand opaque. Anyone who
hastried to delug a setof sendmali [1] rulesshouldundestand this problem. Thisis not
to say thatdeclagtive programning or MBA is abadidea,but we will have to anticipate
andreactto the potental for emegentmisbehaior in suchsygems.
Onemightspeculatéhattheris acritical level of behavoral compkxity below which
it is feasibleto program declaraitvely, but abose which the attemptto do so becomes,
in effect, anincreasinglychaoticprocessof “programmingby emegentbehaior;” that
is, an attemptto reachthe desiredreallts by manipulating declaratve rules, without a
predictableconnectiorbetweerrulesandresults.In otherwords,there might be limits to
sydem desgn techniqueshatattempt to hide thecompkxity of theunderlying problem.

7 Summary

We will never be ableto solve all emergentmisbehaior prodems especlly assystem
compkxity increases. However, we canandshouldbeableto recognizerecuring patterrs
of misbehaior, andto learnenoughfrom past experienceto be ableto awid or repair
mary of thecomnon pattens. Compuer systemgesarch hasan importantrole to play,

espeally in the detedion anddiagnods of emegentmisbehavior, becaus of the need
for and difficulty of constuctinga global view.
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