O}

invent
A Content Integrity Service For Long-Term Digital Archives
Stuart Haber, Pandurang Kamat
Trusted Systems Laboratory
HP Laboratories Princeton
HPL-2006-54
March 20, 2006*
integrity, We present a content integrity service for long-lived digital documents,
archiving, storage, especially for objects stored in long-term digital archives. The goal of
security, the service is to demonstrate that information in the archive is authentic
authentication and has not been unintentionally or maliciously altered, even after its bit

representation in the archive has undergone one or more transformations.
We describe our design for an efficient, secure service that achieves this,
and our implementation of the first prototype of such a service that we
built for HP's Digital Media Platform. Our solution relies on one-way

hashing and digital time-stamping procedures.

Our service applies not only to transformations to archival content such
as format changes, but also to the introduction of new cryptographic

primitives, such as new one-way hash functions.

This feature is

absolutely necessary in the design of an integrity-preserving system that

is meant to endure for decades.

* Internal Accession Date Only

Published in and presented at the IS&T Archiving 2006 Conference, 23-26 May 2006, Ottawa, Canada

Approved for External Publication

© Copyright 2006 IS&T

A Content Integrity Service For Long-Term Digital Archives

Stuart Haber, HP Labs, New Jersey U.S.A.
Pandurang Kamat, Rutgers University, New Jersey U.S.A.

Abstract

We present a content integrity service for long-lived digi-
tal documents, especially for objects stored in long-teigital
archives. The goal of the service is to demonstrate thatrimde
tion in the archive is authentic and has not been unintestigror
maliciously altered, even after its bit representationtie tirchive
has undergone one or more transformations. We describe®ur d
sign for an efficient, secure service that achieves this,camdm-
plementation of the first prototype of such a service that wk b
for HP’s Digital Media Platform. Our solution relies on oneay
hashing and digital time-stamping procedures.

Our service applies not only to transformations to archival
content such as format changes, but also to the introduatfon

is computationally infeasible to find two different inpuket pro-
duce the same hash value. (Such a pair of inputs is calbedia
sionfor H.) For any digital document, its hash valuer = H(x)
can be used as a proxy feras if it were a characteristic “finger-
print” for X, in procedures for guaranteeing the bit-by-bit integrity
of x[8].

Time-stamping

A digital time-stamping scheme is a procedure that solves
the following problem: given a digital documertat a specific
time t, produce aime-stamp certificate that anyone can later
use (along withx itself) to verify thatx existed at timd. Cer-
tificates that will pass the verification test should be diifico

new cryptographic primitives, such as new one-way hash-func forge [4]. There are two different families of time-stampial-

tions. This feature is absolutely necessary in the desiganof
integrity-preserving system that is meant to endure foades.

Introduction
Information in a digital archive can include complex multi-

gorithms, those using digital signatures (hash-and-sigd)those
based entirely on cryptographic hash functions (hashdg)k

In what is sometimes calledtash-and-signime-stamping
scheme, the time-stamp certificate for a document consisis o
digital signature computed by a Time-Stamping Authorit$ &)

part documents. In a long-term archive these documents may b for the document and the time of signing. In practice the TSA

expected to undergo multiple transformations during thigsr
time, including, for example, format changes, modificatida
sub-parts and to accompanying metadata. Skeptical usedigf
ital archive may desire, or in some case may be legally reduir
to verify the integrity of records that they have retrieveahf the
archive.

All typical algorithmic techniques for verifying the intaty
of a digital object begin with a representation of the objecjues-
tion as a sequence of bits. When digital objects are trame&fdiin
any nontrivial way, their bit representations are changedall,
so that these algorithmic techniques no longer apply tortrest
formed object. In fact, it is the usual aim of a cryptograpteich-
nique for proving integrity that it “fail’—more preciselyhat it
correctly succeed in proving lack of integrity—when everira s
gle bit in the object’s representation is changed.

usually digitally signs the hash of the document rather ttien
document itself, and hence the name. This has two major draw-
backs as a tool for long-term archives:

(1) It requires the assured existence of trustworthy aechiv
key-validity history data, in order to check the validity tife
TSA's public key. It is a problem for any TSA to manage such
a key-validity database over extended periods of time, ltea
integrating it with currently deployed commercial PKIs lia-
key infrastructures). (See [7] for a proposed solution.)

(2) The trustworthiness of the certificate depends entwaly
an assurance that the TSAs private signing key has nevar bee
compromised. This is an unacceptable premise for long-term
archives. The combination of increasing computationaueses
with advances in cryptanalytic techniques can be expeotesht
der current digital-signature algorithms ineffective anccepti-

In this work we describe an efficient and secure Content ble to attacks. More simply, the private key of a TSA may leak

Integrity Service (CIS) that solves this problem, which we d

or be stolen. Either way, an adversary would have the altdity

signed and implemented as a service on the Digital Media Plat produce certificates for any document, with an arbitrarynoial

form (DMP) [6].

Background

The basic building blocks of our solution are cryptographic
hash functions and time-stamping procedures. Throughusit t
article we refer to the objects of concern in a digital arehdr
repository simply as “documents”.

Hash functions

A cryptographic hash functiotis a fast proceduréd that
compresses input bit-strings of arbitrary length to outpitt
strings (callechash valuekof a fixed length, in such a way that it

time, past or future.

For the CIS, we chose a time-stamping technique called
hash-linking In this technique, the hash value of the document
to be time-stamped is combined with other hash-valuesvedei
during the same time period to createvéness hash valueThis
witness value is then stored by the TSA or published as a widel
witnessed event. This kind of linking makes it computatlhna
infeasible for an adversary to back-date a document, simae t
would entail computing hash collisions for the witness eal{or
their hash preimages). This technique relies only on thiesmi-
resistance properties of hash functions, and does not mgvsea
crets or keys that need to be securely protected over exdgrale

riods of time [5, 1, 2].

may become insecure several years later. In the last codiple o

In one implementation of hash-linking, the witness hash val years, the cryptographic community has been surprised Wy po
ues themselves are linked in a hash chain, and hash valugs wit erful new attacks on the hash functions MD5 and SHA-1, among
each time period are combined using a Merkle hash tree [9]. Fo others [15, 14]. The question of how best to introduce a natv an

example, Figure 1 illustrates this process for an intervaing
which the requests,, . ..,y4 were received. In this diagrarhl;»

W_1 W
~_T

Hi4

T

Hio Hag
Y1 Y2 Y3 Ya

Figure 1. Hash-Linking using a Merkle hash tree

is the hash of the concatenationyafandy,, H14 is the hash of the
concatenation o1, andHs4, and similarly for the other nodes,

presumably more secure hash function into a system that sesv u

an older hash-function design that may soon be subject tasdev

tating compromise is no longer the merely academic quedtion

was when it was first raised (and incorrectly solved) by the au
thors of [5].

Suppose that an implementation of a particular time-
stamping system is in place, and consider the (uhic;), where
c1 is a valid time-stamp certificate (in this implementationj f
the bit-stringd. Now suppose that some time later an improved
time-stamping system is implemented and deployed—nby cepla
ing the hash function used in the original system with a neshha
function, or even perhaps after the invention of a compjatelv
algorithm. Is there any way to use the new time-stampingesyst
to buttress the guarantee of integrity supplied by the fieate,
c1, in the face of potential later attacks on the old system?

One could simply submitl as a request to the new time-
stamping system; but this would lose the connection to thge or
inal time of certification. Another possibility is to subnut as
a request to the the new time-stamping system. But that would

andW andW_, are the respective witness hash values for the cur- be vulnerable to the later existence of a devastating atindke

rent and the previous intervals. The time-stamp certififiatéhe
third request (the one containing hash vayjge for example, is
[ti; (Y4, R), (H12, L), (W_1,L)], wheret; is the time of the current
interval. One validates the claim that this is a correct tstemp
certificate for a digital document by hashing the documeking
the resulting hash value (presumaigdy, combining it on the right

hash function used in the computationoaf as follows: if an ad-
versary could find another documetditwith the same hash value
asd, then he could use this renewal system to back-date the
original time.

Suppose instead that the péi,c;) is time-stamped by the
new system, resulting in a new certificatg and that some time

with y, from the certificate, and hashing the concatenation; tak- after this is done (i.e. at a definite later date), the origimethod

ing the resulting hash value (presumably,) and combining it on

is compromised. The certificat® provides evidence not only

the left withHy,, and so on, finally obtaining a putative witness that the document contentisexisted prior to the time of the new

value. This value is then checked against the publishedegstn
value,W, that is associated with the timhe

Design of the Content Integrity Service

The Content Integriy Service is only one piece of the daunt-

ing engineering project of designing a large-scale longeidig-
ital archiving system [11].

time-stamp, but that it existed at the time stated in theiwaig
certificate,cy; prior to the compromise of the old implementa-
tion, the only way to create a valid time-stamp certificate \ga
legitimate means.

Auditable transformation history
Now suppose that we are interested in the long-term preser-

The essence of our solution is to use a secure digital time-vation of a particular digital document. For this descoptisup-

stamping system, first to time-stamp every document at trayes
into the archive, storing the resulting time-stamp cedificn the

pose that we are only interested in enabling the autheiticat
the entire document (as opposed to making this possible ks we

archive with the document; and second to produce an auditabl for parts of the document). In its original form, l@étdenote the

record of every transformation to a document in the archive,
such a way as to verifiably link the time-stamp certificatetfer
transformed version of the document to its original formfdse

bit-string representation of the document in file formhaaind let
us suppose that is time-stamped at timg with resulting time-
stamp certificate. We will write c= T §d;t) to indicate that the

describing how we do this in general, we first discuss theiapec certificate is for input consisting of the documehtand it was

case of a particular kind of transformation to a documeneis
a method for updating its integrity certificate.

Renewing integrity certificates

computed at time.

Now suppose that at some later tithgit is decided to make
a format change to format’, using a particular conversion or
migration procedure. Led’ denote the bit-string representation

In order to explain our solution, we first describe the pro- of the resulting document. Simply computing a new time-gtam

cess of “renewing” digital time-stamps [1]. The need forsthi

certificate ford’ would lose the connection betwedh the new

is motivated by the fact that—as noted above for the particu- representation or rendition of the document, and its oaigier-

lar case of keys for digital signatures—with advances in-com sion. The aim rather is to memorialize—and enable latefiveri
putational power and resources, as well as the discovery-of e cation of—this format conversion, while preserving theuassce
tirely new cryptanalytic algorithms, particular instas@# crypto- of integrity all the way back to that of the original form ofeth
graphic primitives that were secure when they were firstalegl document. We can do this by adapting the procedure for renew-

ing time-stamps described above. Lekenote a standard format
for describing an invocation of the migration procedureduse
convert from formatf to formatf’, perhaps including file-names
and other useful meta-data for input and output filendd’, re-
spectively. Then, immediately after performing the cosiar, a
new time-stamp request fad, d’, i, c] is submitted, and the result-
ing time-stamp certificate’ = TSd,d’,i,c;t’) is stored with the
document in the archive. The new certificatecan be used to
verify the integrity of the latest form of the original docent.

Assuming the integrity of as a description of the transfor-
mation, the only way to compromise the security of our soluti
is to compute collisions for the hash functions that we use.

Document Transformations
The description of our algorithm in the previous section was
couched in terms of a simple transformation to a single ediic-

tor's speech, or it could be an entire daily issue. In any ctee
act of compiling a collection of subdocuments extractedftbe
archive, each accompanied by its extended integrity ceatéi is
another well-defined transformation to which the CIS applie

If this compilation is chosen in response to a query to a suit-
ably designed search engine for the archive, such a ClSicatgi
can even be computed on the fly to accompany the response to the
query.

Note that it is not necessary for the archivist to chooséet t
moment a document is ingested into the archive, exactly thow i
will turn out to be convenient later to break up the documatd i
subdocuments. This choice can be made later, at which gant t
computation of hash values for subdocuments and their grgup
into an appropriate hierarchical structure is simply aaothell-
defined transformation.

In all of these cases, CIS can be used to verifiably prove that

ument. But variations on the same technique can be applied tathe new document was produced by applying the particulastra

complex transformations to one or more pieces of a multi-par
document, including format conversions, annotations jtiuf

of metadata, and later modifications of the document. NHyura
transformations can follow one another, and each one camrbe c
tified by a CIS certificate. Transformations include:

e Business workflowA document may undergo several trans-
formations one after the other as part of a business workflow.
Each step of the workflow instance can be regarded as a sin
gle transformation that CIS can certify.

Document redactionSensitive parts of a document may be

redacted (i.e. removed or blacked out) before it is made pub-

lic, for reasons of security, privacy, or protection of teamb-
crets. By applying CIS, the integrity of the redacted versio
can be linked to the integrity of the original.

Integrity metadata:The process of renewing a document’s

time-stamp certificate as described above can be regarded as

a special case of CIS, as applied to a particular modifica-
tion of an item of metadata corresponding to the document
(namely, its time-stamp certificate). But similar logic ap-

plies to other sorts of accompanying metadata related to in-

tegrity, including digital signatures, public-key cextdies,
and key-validity information such as CRLs (certificate revo
cation lists) and the like.

A particularly interesting case is provided by the extramti
of subdocuments from a complex multi-part document that can
be represented hierarchically in a graph. (For a concretmple,

formation(s) to the original document(s). CIS does not pt a
restriction on the way transformations are representeddrsys-
tem, so long as the representation is consistent.

The CIS can also be useful outside the context of a large digi-
tal archive. To give one example, it is common practice icais
ery requests in litigation in the US court system that largietes
of Microsoft Office files and email messages are converteifto t
image files before being turned over to opposing counsel. CIS

‘could be used to buttress the integrity of these files, ealbgci

(but not exclusively) in cases where the original files wégaexd
or time-stamped in their original format.

Prototype implementation

| [

Content Services Network

Repository
(. Service
Interaction
Management Security Patterns ,
Reposnory}

Service

S EEEEEEE—
Content Processing
} Workflow

Application
Service

Application
Service

Application

3 Service
Service

P
Content

Processing
Service

Processing
Service

{ Content

Content
Integrity
Service

Figure 2. Content Integrity Service on HP Digital Media Platform

the US Congressional Record is a sequence of “volumes”, each

consisting of “daily issues” that in turn contain “sectibr®n-
taining “items of business”; a typical item of business isen&
tor's speech, which might be broken up into paragraphs.) By a
algorithmic technique analagous to the Merkle-tree metthast
trated in Figure 1 above (and described in greater detaivel
itis possible to combine hash values for individual subdoents

We have implemented a prototype of the Content Integrity
Service within HP’s Digital Media Platform (DMP). This is a
modular, service-oriented architecture that was desigaedplat-
form for building and maintaining an enterprise-scale esuit
content storage and processing operations [6]. DMP present
XML-based interface for service interaction, and the CIS wa-

S0 as to compute a single summary hash value that depends opjemented as a service within this framework, as shown in Fig

the entire document. Furthermore, the hash value for argyosb
ument can be linked to the summary hash value by a succinct lis
of hashing instructions; this list can be used to extend adels
tificate for the entire document (represented by its sumrhashp
value) to form a CIS certificate for the subdocument.

Returning to the example of the Congressional Record, such

an extracted subdocument could be a single paragraph ofa Sen

ure 2.

As we implemented the CIS in DMP, it handles complex doc-
uments stored in the DMP Repository, and consists of theviell
ing set of operations:

e Certifyoperates on documents alone, producing for any doc-
ument a time-stamp certificate and storing it with the docu-

ment in the Repository.

Validatetakes a document and its integrity certificate (in the
format in which they would be stored in the Repository, and
checks the validity of the certificate for the given document

Transform-certifyoperates on a document and a transforma-

tion, expressed as described below, and computes the corre-

sponding CIS certificate.
Transform-validatés used to check the validity of a trans-
formed document and its CIS certificate.

CIS was built as a proof of concept, but we did not integraitetdt
a full document management system.

In the DMP architecture, transformations on content are ex-
pressed as workflow instances that can be serialized in XML.
Our Transform-certifyand Transform-validateperations use this
XML representation of the workflow instance as their staddar
format for describing a transformation. In the notation of de-
scription above of our basic algorithm, this is the invozaii of
the transformation.

In principle, an instance of the CIS can use any time-
stamping service that is available, or even a digital-digmasys-
tem (preferably one with a well-engineered PKI). Our prypet
was built so that it could make calls tertify andvalidatefunc-
tions provided by any service. We chose to use the time-stgmp
service provided by Surety, LLC, whose hash-linking teghei
is a preferred method for long-lived documents [12].

In 2004, when we built our prototype, Surety’s service used
MD5 and SHA-1, evaluated in parallel, as its hash functianc&
then, in light of recent attacks on both of these functionse§’s
service uses SHA-256 and RIPEMD-160 (also evaluated ir-para
lel), and offers the renewal capability desribed above éoords
that were originally time-stamped with the older versiontlod
service.

Graph data model for documents

DMP stores all content in a repository that models its data as
a directed graph. According to this DMP Repository Absimagtt
a document is a graph whose points amges resources and
literals, joined by labelled directed edges callpaperties All
documents are stored as graphs. Nodes are typically usepires r
sentative hierarchical structure within a complex muértglocu-
ment. Components of the document are represented as respurc
which are leaves in the graph. Literals are strings that neaysled
to represent metadata. Properties belong to a node, linking
other nodes, resources or literals. Nodes and resourcesared
using Uniform Resource Identifiers (URIs). Figure 3 showisra s
ple graph consisting of a single nodlg joined by propertyp to
resourceR and by propertyj to literal L.

N
N
R L

Figure 3. A simple graph

The DMP Repository Abstraction is especially convenient
for handling the integrity metadata used by the CIS. Whema-ti
stamp or CIS certificate is computed for a docuntribe service
constructs arauth-nodefor d, linked via itsauth property tod,

via itshash property tod’s hash value, and via itsert property
to the certificate. Figure 4 shows the result of applying tie G
the document represented by nddién Figure 3.

s

Figure 4. The graph of Figure 3, certified

auth auth(N)

|
cert
h c

Computing the hash value of a graph

For our implementation of CIS, a document is represented
by a graph (or subgraph) in the DMP Repository. Specifically,
document is named by giving the URI of a node in the repository
and the document consists of the subgraph spanned by a depth-
first search of the repository beginning at the given node.

To compute a hash value for a document, we need to com-
pute hash values for every node or resource in the documéant, m
roring the structure of the graph as we do so. Our algorithm is
inspired by the sort-hash approach described in [3]. Pseade
for the two main functions that make up our algorithm is shown
as Algorithm 1 and Algorithm 2 below.

input : URI uri

output: Hash as a byte array

if (uri.type == RESOURCE)hen
return ResourceHash(uri);

else
return NodeHash(uri);

end

Algorithm 1: Function URIHash

input : URI nodeURI

output : Hash as a byte array

description: Hash the set of (property,URI) tuples that make uy
the node

buffer = NodeMapHash (URI nodeURI);

foreach property in lexicographic ordedo
if (the property points to a URI) &&

(this URI has not been hashed befotiegn
| buffer = concat(buffer, URIHash(URI));

end
end
return buffer;
Algorithm 2: Function NodeHash

The URIHash function simply checks to see whether its in-
put URI points to a resource or a node. Ifitis a resource, then
simply hash the bit-string representation of the resoutt¢he
URI points to a node, then we call thodeHastunction to hash
the hierarchical structure in the repository with this nedeits
root. TheNodeHaslfunction first calls theNodeMapHasHunc-
tion, which hashes the lexicographically ordered set ajigprty-
name, uri) pairs that form part of the node. It then beginsde t

verse the graph, following the edges given by the outgoilog-pr
erties of the node. Specifically, obtodeHashalgorithm hashes
the graph in a lexicographically ordered depth-first tragkrbe-
ginning at the root, to recursively hash all the nodes, nessu
and literals that form the graph. At each level, intermedtash
values capture the bit-string representation of the ressuand
literals as well as the structure of the graph itself. TNade-
Hashalgorithm avoids any cycles while traversing the graph. The
hash value and the resulting time-stamp certificate aredtior
the repository, linked to the document graph.

We illustrate our algorithm by showing what it computes,
given the graph shown in Figure 5. We start with the URI of

Ny <~—————

AN

Ry N2 L1 Ps
)
Ry L,

Figure 5. A cyclic graph

N;. Since the URI points to a node, we invoke tRedeHash
function and mark the node as “traversed”. The first stépdde-

Hashis to serialize and hash the property-map of the node using

the NodeMapHasHunction. As part of this step, the literh} is
hashed along with the properBg; this is because (following the
specification of the DMP Repository) the literal is storecasrt
of the nodeN; and is not stored as a separate entity. Then we tra-
verse the document graph, by lexicographic order of prageert
(Let’s say that?; < P, < P3, andP; < Ps.) SincePy points to a
resourceR;, we simply hash the bit-string representationRaf
Next, we examine propertl and find that it points to a node,
No. Hence the functioiNodeHashs called recursively on node
No. In this step, the resourd® and literalL, are handled in the
same way as werB; andLy, respectively, when we visiteld; .
By contrast, by following the edge with propeifg, pointing to
nodeNjs, the function detects that nodlg has been traversed and
therefore does not invokdodeHashon it again. However, we
have captured the fact that notle does have a properfg that
points toNy, as part of the computation dfodeMapHaston N,.
Thus no information is lost in this process.

The complete calculation of NodeHabhj is shown here:
NodeHasliN;)
=HashNodeMapHasN;) | HashR;) | NodeHaskNy))

NodeMapHasfN;) = Hash([Py,r1],[P2,n2], [P, La]),
wherer; = URI(Ry),n2 = URI(Ny), etc.

NodeHasliNy) = HashNodeMapHastNy) | Hash(Ry))
NodeMapHastNz) = Hash([Ps,r2], [P, L2], [Ps, M)

Given all these pieces, oufransform-certify operation
works as follows. As mentioned above, DMP transformations
are represented in XML. An invocation dfransform-certify
takes as inputs the URId and d’ for the original and trans-
formed documents, the XML representatiorof the transfor-

mation, and and the auth-node of the original document.
The CIS certificate is a time-stamp certificate computed for
a request consisting of the hash valbecomputed ash =
HasHNodeHaskd) | NodeHaskd’) | NodeHaska) | Hash(i)].

It is clear that the same technique can be used to compute
a hash value, and then a CIS certificate, for any digital dbjec
that is constructed according to an edge-labeled graphdadal
similar to that used in W3C’s Resource Description Fram&wor
[13]. Recent applications of such data models include work i
biological research [10].

Conclusion and future work

In this paper we presented the design requirements for a Con-
tent Integrity Service for long term digital archives. Wethde-
scribed the architecture of such a service as a solution &ad d
cussed the implementation of a protoype version of the s@is.
imlementation uses the highly modular and extensible iiepgs
and content services framework provided by HP’s Digital Med
Platform.

Our prototype of the CIS can be extended to implement the
capability (1) to renew integrity certificates for docungn(®) to
certify parts of a document, using the certificate of the noaic-
ument; (3) to handle complex versioning scenarios for these
tory; and (4) to process optional attributes that may becistsal
with node properties in future versions of DMP.

References

[1] Dave Bayer, Stuart Haber, and W. Scott Stornetta. Imipgthe
efficiency and reliability of digital time-stamping. In R.NCapoc-
elli, A. De Santis, and U. Vaccaro, edito®equences II: Methods in
Communication, Security, and Computer Sciemages 329-334.
Springer-Verlag, 1993. (Proceedings of thequencedVorkshop,
Positano, Italy, 1991).

Josh Benaloh and Michael de Mare. Efficient broadcasetim
stamping. Technical Report TR-MCS-91-1, Clarkson Univers
Department of Mathematics and Computer Science, 1991.
Jeremy J. Carroll. Signing RDF graphs. Tie Semantic Web —
ISWC 2003 volume 2870 ofLecture Notes in Computer Science
Springer-Verlag, 2003.

Stuart Haber and Henry Massias. Time-stamping. In H.C.A
van Tilborg, editor,Encyclopedia of Cryptography and Security
Springer, 2005.

Stuart Haber and W. Scott Stornetta. How to time-stamjgéadi
document.Journal of Cryptology1991.

HP Digital Media Platform White Paper.
http://www.hp.com/. To appear, 2006.
Petros Maniatis and Mary Baker. Enabling the archivatage of
signed documents. IRAST '02: Proceedings of the 1st USENIX
Conference on File and Storage Technolog2302.

Alfred Menezes, Paul van Oorschot, and Scott Vanstétamdbook
of Applied Cryptographychapter 9. CRC Press, 1996.

Ralph Merkle. Protocols for public key cryptosystems.Proceed-
ings of the 1980 Symposium on Security and Privpages 122—
133. IEEE Computer Society Press, 1980.

Frank Olken. Biopathways graph
data manager (BGDM). Available at
http://hpcrd.1bl.gov/staff/olken/graphdm/graphdm.htm.
R. Sproull, H. Besser, J. Callan, C. Dollar, S. Haber, ied-
strom, M. Kornbluh, R. Lorie, C. Lynch, J. Saltzer, M. Set{zend

(2]

(3]

(4]

(5]

Available at

(6]
(7]

(8]
El

[10]

[11]

(12]
(23]

[14]

(18]

R. Wilensky. Building an Electronic Records Archive at the Na-
tional Archives and Records Administration: Recommendatior

a Long-term StrategyNational Archives and Records Administra-
tion, 2005. R. Sproull and J. Eisenberg, editors.
Surety.http://www.surety. com.

World Wide Web Consortium (W3C). Resource descripfiame-
work (RDF). Available ahttp://www.w3.org/RDF/.

Xiaoyun Wang, Yigun Lisa Yin, and Hongbo Yu. Finding lisibns

in the full SHA-1. In Victor Shoup, editorAdvances in Cryptol-
ogy — CRYPTO 200%0olume 3621 ol ecture Notes in Computer
Science2005.

Xiaoyun Wang and Hongbo Yu. How to break MD5 and othethhas
functions. In Ronald Cramer, editdkdvances in Cryptology — EU-
ROCRYPT 2005volume 3494 ofLecture Notes in Computer Sci-
ence 2005.

Author Biography

Stuart Haber is a researcher at Hewlett-Packard Laboragerispe-

cializing in cryptography and computer security, with af@ular interest
in problems associated with the integrity of digital obgedBefore joining
HP, he worked at Bellcore (now Telcordia), Surety (which trdarinded),
and InterTrust STAR Lab.

Pandurang Kamat is a Ph.D. student in the Computer Scienee de

partment of Rutgers University specializing in security grivacy re-
search.

