

Keyword(s):

Abstract:

©

Automatic Pagination of HTML Documents in a Web Browser

Alfie Abdul-Rahman, Roger Gimson, John Lumley

HP Laboratories
HPL-2009-123

XSLT, DOM, adaptive layout, pagination

A typical HTML document that is viewed in a web browser usually requires some form of scrolling actions
from the user in order to view the whole document. In this paper, we present an application for the
automatic pagination of an HTML document in a web browser, based on the dimensions of the browser
window. Our application does not involve any server-side or proxy technologies or any additional plug-in
or code beyond the JavaScript and XSLT support in the browser. It is based on a two-stage process - (i)
decoration of the HTML Document Object Model (DOM) with its coordinates and sizes using a library of
JavaScript functions and (ii) pagination of the HTML DOM using a transform via the browser built-in
XSLT 1.0 processing engine.

External Posting Date: July 24, 2009 [Fulltext] Approved for External Publication
Internal Posting Date: July 24, 2009 [Fulltext]

Copyright 2009 Hewlett-Packard Development Company, L.P.

Automatic Pagination of HTML Documents
in a Web Browser

Alfie Abdul-Rahman, Roger Gimson, John Lumley
Hewlett-Packard Labs
Long Down Avenue

Bristol BS34 8QZ, UK
{alfie.abdul-rahman, roger.gimson, john.lumley}@hp.com

ABSTRACT
A typical HTML document that is viewed in a web browser
usually requires some form of scrolling actions from the user
in order to view the whole document. In this paper, we
present an application for the automatic pagination of an
HTML document in a web browser, based on the dimen-
sions of the browser window. Our application does not in-
volve any server-side or proxy technologies or any additional
plug-in or code beyond the JavaScript and XSLT support in
the browser. It is based on a two-stage process – (i) decora-
tion of the HTML Document Object Model (DOM) with its
coordinates and sizes using a library of JavaScript functions
and (ii) pagination of the HTML DOM using a transform
via the browser built-in XSLT 1.0 processing engine.

Categories and Subject Descriptors
I.7.5 [Computing Methodologies]: Document and Text
Processing– Document Capture[document analysis]

General Terms
Algorithms, Design

Keywords
XSLT, DOM, adaptive layout, pagination

1. INTRODUCTION & MOTIVATION
This paper describes some of our research on adaptable

presentation of documents. The issues that are being ex-
plored include device independent authoring of documents,
such as HTML pages. A significant amount of research effort
has been directed towards achieving device independence, in
particular the rendering of web pages on small screen devices
[4]. The process of rendering the pages typically involves the
analysis of the structure and layout of the document and the
delivery of its presentation to the device either using client-
side methods, server-side technologies or a proxy [6].

.

The main motivation behind this paper is to explore the
possibility of implementing a client-side approach of auto-
matic pagination of HTML documents based on the dimen-
sion of the web browser’s window. An advantage of im-
plementing such an approach client-side is that a human
viewer of the document can be presented with an alternate
presentation of the document without the additional com-
munication cost between the server (or a proxy) and the
user’s machine. Also, it is easier to make use of the built-in
rendering abilities of the client during pagination.

A number of studies have been carried out comparing the
usability of paging and scrolling. The issues have been ex-
plored from several view points which range from the effec-
tiveness of displaying search results [3] to the reading and
understanding of text [1]. Which one of the two approaches
is preferable to the human viewer depends on the nature of
the HTML document.

The remainder of this paper is organized as follows. In
Section 2, we describe related work. In Section 3, we de-
scribe our proposed application of automatic pagination of
the HTML documents together with some example results
and possible extensions for the application. Finally, in Sec-
tion 4, we provide our observations and concluding remarks.

2. RELATED WORK
An HTML document is usually considered to represent a

single web page.
The pagination of an HTML document involves partition-

ing the document’s content and presenting it on individual
pages (or sheets). The W3C’s CSS Level 3 Working Group
has proposed some mark-up for web page pagination using
Template Layout Module [10] and Paged Media [11]. An ex-
ample of a Paged Media module implementation can be seen
in Prince [12].

Other discussions on pagination of HTML documents can
also be found on the web. Examples include the pagination
of HTML documents based either on cut-off markers or the
number of items to be displayed per page. These examples
can then be implemented either using server-side technolo-
gies [2, 7] or client-side methods [8]. These approaches are
different from our proposed application, which is a client-
side implementation where the pagination is based not on
the document logical structure but on the dimension of the
web browser’s window and the rendered size of components.

We do not explore the usability issues that may arise from
the pagination of HTML documents. Baker [1], Bernard et

al. [3] and Peytchev et al. [9] amongst others consider this
issue.

3. DESCRIPTION
Our proposal for automatic pagination of an HTML docu-

ment is a client-side implementation, composed of two parts
– (i) a library of JavaScript functions for sizing the pages
and decorating the HTML DOM with size attributes and
(ii) a pagination process via an XSLT transformation. The
overall architecture is shown in Figure 1.

Figure 1: Overall architecture of the automatic pag-
ination application.

The browser is instructed to perform pagination by em-
bedding a library of JavaScript functions in the head tag,
invoked via onload and onresize event-handlers. onload

is initiated when the HTML document is first loaded to
the web browser, while onresize is invoked each time the
browser’s window size changes.

The elements (or content) that are to be processed are
located in the body of the HTML document. These elements
are typical HTML nodes and will be transformed later on in
the pagination process.

Document model: In our implementation, we assume
that the layout in the document has not been arranged by
absolute positioning through the CSS position property and
the leaf nodes are considered to be atomic pieces in flow or-
der. That is the elements are read from top to bottom of the
page and arranged one after another. As the browser’s win-
dow is resized, it is assumed that the browser’s layout engine
will re-arrange the elements accordingly. As an HTML doc-
ument contains a hierarchical structure in its nested tags,
the structure can be parsed as a tree of objects in the DOM.

Detecting & recording geometry: Given such a docu-
ment, we first traverse the HTML DOM tree using a library
of JavaScript functions. These functions decorate each el-
ement in the body node with its coordinates and size as
attributes, which record approximate space that each ele-
ment occupies in the browser’s window. These coordinates
and sizes are re-computed each time the browser’s window
changes. The two attributes that are important in our imple-
mentation are the y-coordinate and height of the elements
(see Figure 2). We define this decorated DOM tree as a
pre-process DOM tree and keep an invisible copy of it by
setting its display attribute to none. By keeping a copy
of the pre-process DOM tree, we are able to maintain the
original structure of the HTML document and use it each
time the browser’s window is resized (see Figure 3).

Figure 2: Structure of pre-process DOM tree of the
HTML document shown in Figure 4(a).

Splitting to sheets: The decorated DOM is then passed
to the second part of our application – a paginator, imple-
mented in XSLT. Figure 2 shows an example structure of the
pre-process HTML document of Figure 4(a), where solid and
dashed boxes indicate the start and end leaf nodes of each
sheet in a depth-first traversal of the tree. The XSLTProces-
sor object1 in JavaScript defines a Transformer class that
can encapsulate an XSLT stylesheet and apply it to the ‘orig-
inal’ HTML document. The transformer then paginates the
DOM into several sheets. The overall size of the content in
each of the generated sheets is the approximate size of the di-
mension of the web browser’s window. The resulting sheets
are then re-inserted into the DOM by the Transformer class
and later rendered by the browser’s layout engine. Figure 3
shows the resulting paginated DOM tree of the HTML doc-
ument together with the ‘hidden’ copy of the original input.

Figure 3: Structure of resulting processed DOM tree
of the HTML document as well as its ‘hidden’ orig-
inal input shown in Figure 4(b).

The results of the pagination together with its unpagi-
nated version can be seen in Figure 4. Figures 4(b) and
(c) show that the content and structure of the HTML doc-
ument are maintained by our application (i.e., no informa-
tion is added or lost during the decoration and pagination
processes). The only object that was appended to the doc-
ument is the navigation mechanism located on the top of

1In Internet Explorer, a transformNode() method is used.

(a) (b) (c) Sheet 1 – Sheet 4

Figure 4: (a) An unpaginated version of the HTML document. (b) Showing where the pagination breaks will
be inserted. (c) The results of the paginated document as viewed in the browser, with added navigation.

each sheet.
Although our application is able to handle most tree struc-

tures and CSS styling, there are cases where further work
is needed, such as, changed sibling positions affecting the
numbering of ordered lists and preserving position sensitive
CSS styling.

As the pagination process of the sheets is implemented via
the built-in XSLT processing engine, the HTML DOM must
be well-formed. Like many current web pages it requires
that JavaScript is enabled in the web browser. Our ap-
proach has only been implemented using the Firefox browser
but we believe that it can also be implemented on other
browsers that support the manipulation of the DOM. We
have implemented our application using a combination of
JavaScript functions and XSLT because required tree manip-
ulation is more succinctly defined in XSLT. However, there
is nothing to prevent re-implementing the whole application
in JavaScript.

3.1 Implementation Details
In this section, we discuss in further detail the two main

components of our pagination application.

3.1.1 Decoration of the HTML DOM
The attributes that are added as decorations on the HTML

DOM tree, defined using JavaScript properties2, are as fol-
lows:

x and y: specify the coordinates of the elements in the DOM
and are determined from the offsetLeft and offset-

Top properties.

width and height: defines how much space is occupied by
the element and are computed from the offsetWidth

and offsetHeight properties.

In addition, the dimensions of the browser’s window (i.e.,
width and height) are also determined and are added as at-
tributes to the top of the DOM tree. The width and height

2These properties are specific to Firefox and may be different
for other browsers.

are calculated from the innerWidth and innerHeight prop-
erties of the window object.

All the above attributes are annotated onto the HTML
DOM tree using JavaScript. This DOM tree is then hidden
by setting its display attribute to none.

3.1.2 Pagination of the HTML DOM
Now we have all the necessary geometry, pagination in-

volves two parts:
Dividing elements into sheets: We first determine the

area that is available for display by taking into account the
amount of space that is occupied by the navigation mecha-
nism. Each of the elements in the DOM tree is labelled with
a unique identifier that is used for identifying the start and
end leaf nodes in each group. We assume that the leaf nodes
are atomic pieces in flow order.

Beginning with the first element in the DOM tree, an ele-
ment is considered to be part of a group if its end-y (i.e., sum
of its y-coordinate and height) is less than the displayable
height that was calculated earlier. This process is repeated
until we have reached the last element in the DOM tree.
There will be situations where the height of an unbreakable
element is greater than the displayable height and, for the
moment, the element will be displayed as it is. There are
several improvements that can be implemented depending
on the element’s type. For an image, we can reduce the
size of the image to fit the displayable area and for a text
paragraph, we can split the paragraph into lines and choose
which point to perform the pagination.

Gathering elements into sheets: Using the unique
identifiers of the start and end nodes in each group, we then
traverse through the DOM tree and copy the nodes that are
located within the start and end nodes, placing each group of
nodes within an appropriate div. It is vital that we maintain
the tree structure and preserve the ancestry of the leaf nodes
as CSS styling of the document can be affected by them and
this may involve the duplication of intermediate ancestor
nodes that ‘straddle’ a page boundary.

3.2 Navigation of the Sheets
Rather than using embedded back and forward buttons

in the page, in this implementation our navigation tool for
manoeuvring between the sheets is a horizontal tab menu
that shows the sheets that can be found in the document.
The tab menu is created using a combination of HTML, CSS
and some JavaScript functions. This approach of building a
horizontal tab menu is similar to that discussed by Blixt [5].

Each of the tabs represents a paginated sheet. The tabs
and divisions are dynamically generated during the pagina-
tion process and the resulting tab menu and sheets are in-
serted into the document. Each of the sheets is made visible
by JavaScript functions, which modify its display attribute
to either none or block.

One of the advantages of choosing and designing this form
of navigation is that we do not need to create any hyper-
links and no additional page needs to be created for each
paginated sheet, allowing everything to be done client-side.
However, a disadvantage is that the tab menu occupies space
on the sheet and must be a constant size.

3.3 Possible Extensions
In this section, we discuss some of the possible extensions

that can be implemented in our application, either in the
paginator or embedded in the HTML document.

3.3.1 Paginator
Our application is able to automatically paginate HTML

documents that contain both text and images. The pagi-
nation is performed between nodes. However, there will be
cases where it is necessary to split a paragraph into lines
and decided at which point between the lines to perform the
pagination. This extension is very desirable in our applica-
tion but may not be implementable in current browsers that
are unable to retrieve information below the DOM level. In
order to implement this, better access to the browser ren-
dering engine is needed.

3.3.2 HTML Document
There are various ways of structuring the HTML docu-

ments for pagination. Early on in the paper we have shown
how a basic model of an HTML document can be paginated.
We can extend this model by additionally representing a
footer and a header within the document. This form of
structuring should be easy to implement and it also avoids
the task of analyzing the document in order to identify its
semantic structure.

In the course of paginating an HTML document, there
will be situations where it is desirable to provide alternative
content for a specific element. This could be due to either
the limited space of the displayable area, restriction based
on the device capabilities or user preferences. For example
an image can be displayed at its full resolution, at a reduced
resolution or by providing only a description of the image.

Some other extensions that can be embedded inside the
HTML documents include:

Logical grouping of content: Content can be logically
clustered according to specific groups as a way of describing
their connectivity. For an example, a particular piece of a
paragraph may be grouped together with an image therefore
forcing them to be paginated onto the same sheet.

Cut-off markers: Cut-off markers may be included in-
side an HTML document, indicating the desirable pagina-
tion points and including additional constraints to the pag-
ination process.

4. CONCLUSIONS
So far the work in this paper has only explored a small

area of adaptable presentation of documents, and there is
much further work that can be done. In this paper, we have
reached the objective that we set out to achieve:

• Designing and implementing a client-side application
that enables the automatic pagination of an HTML
document based on the dimension of the web browser’s
window and the rendered size of components.

We are able to provide an alternative paginated means of
presenting an HTML document. Furthermore, by perform-
ing the pagination client-side, we have been able to save the
communication cost between the server (or a proxy) and the
user’s machine.

5. ACKNOWLEDGMENTS
The authors would like to thank Tony Wiley for support to

this work, and Owen Rees who provided helpful discussions
of this work and his assistance in bug tracking in the initial
implementation of the application.

6. REFERENCES
[1] J. R. Baker. The impact of paging vs. scrolling on

reading online text passages. Usability News, 2003.

[2] L. Baptiste. Perfect PHP pagination. sitepoint.
http://www.sitepoint.com/print/

perfect-php-pagination/ (Apr 2009).

[3] M. Bernard, R. Baker, B. Chaparro, and
M. Fernandez. Paging vs. scrolling: Examining ways to
present search results. In Proc. of the Human Factors

and Ergonomics Society 46th Annual Meeting, 2002.

[4] T. W. Bickmore and B. N. Schilit. Digestor:
Device-independent access to the World Wide Web. In
Selected papers from the sixth international conference

on World Wide Web, pages 1075–1082. Elsevier
Science Publishers Ltd., 1997.

[5] A. Blixt. Tabbed navigation using CSS. web.
http://tutorials.mezane.org/

tabbed-navigation-using-css/ (Apr 2009).

[6] M. Butler, F. Giannetti, R. Gimson, and T. Wiley.
Device independence and the web. IEEE Internet

Computing, 6(5):81–86, Sep/Oct 2002.

[7] O. Mikheev. Ajax programming with Struts 2.
JavaWorld. http://www.javaworld.com/javaworld/
jw-08-2007/jw-08-ajaxtables.html (Apr 2009).

[8] I. Pepelnjak. Automate the pagination of your web
pages. informIT, Feb 2007. http://www.informit.
com/articles/article.aspx?p=691505 (Apr 2009).

[9] A. Peytchev, M. P. Couper, S. E. McCabe, and S. D.
Crawford. Web survey design paging versus scrolling.
Public Opinion Quarterly, 70(4):596–607, 2006.

[10] W3C. CSS Template Layout Module. Web. http:
//www.w3.org/TR/2009/WD-css3-layout-20090402/

(Apr 2009).

[11] W3C. CSS3 Module: Paged Media. web. http:
//www.w3.org/TR/2006/WD-css3-page-20061010/

(Apr 2009).

[12] YesLogic Pty Ltd. Prince XML. Web, 2008.
http://www.princexml.com/ (Nov 2008).

