

Keyword(s):

Abstract:

©

Cascaded Dynamic Templates for Active Documents

John Lumley, Alfie Abdul-Rahman

HP Laboratories
HPL-2009-143

XSLT, SVG, Document construction, Functional programming, Document editing

Documents that are intended to be 'active', with high variability and context responsivity, are increasingly
attractive building blocks for applications, inevitably defined in XML syntaxes. But many such documents
within an application will have features in common, such as branding, models of variablity and user
interaction, which need to be defined in single locations. We outline an approach using cascaded networks
of 'templates', each of which is a first class document and containing fragments of functional programs in
separate spaces, that can support sharing all necessary information, including dynamic behaviour.

External Posting Date: July 24, 2009 [Fulltext] Approved for External Publication
Internal Posting Date: June 21, 2009 [Fulltext]

Copyright 2009 Hewlett-Packard Development Company, L.P.

Cascaded Dynamic Templates for Active Documents
John Lumley, Alfie Abdul-Rahman

Hewlett-Packard Laboratories
Long Down Avenue, Stoke Gifford

BRISTOL BS34 8QZ, U.K.
{john.lumley,alfie.abdul-rahman}@hp.com

ABSTRACT
Documents that are intended to be ‘active’, with high variability
and context responsivity, are increasingly attractive building blocks
for applications, inevitably defined in XML syntaxes. But many
such documents within an application will have features in com-
mon, such as branding, models of variablity and user interaction,
which need to be defined in single locations. We outline an approach
using cascaded networks of ‘templates’, each of which is a first-
class document and containing fragments of functional programs
in separate spaces, that can support sharing all necessary inform-
ation, including dynamic behaviour.

Categories and Subject Descriptors
I.7.2[Computing Methodologies]: Document Preparation —
desktop publishing, format and notation, languages and systems,
markup languages, scripting languages

General Terms: Languages

Keywords: XSLT, SVG, Document construction, Functional

programming, Document editing

1. INTRODUCTION & MOTIVATION
There is growing interest in document centric applications to make
automated business operations more accessible to the non-IT spe-
cialist. Ad hoc solutions based on standard passive office tools -
word processors and spreadsheets and semi-active distribution ser-
vices such as email servers, coupled with lightweight macro and
similar languages have been used by many in enterprises, but they
suffer from poor coherence models, poor quality in security and
robustness and insufficient ‘activity’ to supplant purpose-developed
centralised workflow applications. Consequently much opportun-
ity for business flexibility is lost or exploited inadequately.

A new class of active documents is being explored, through exten-
sions and amalgamations of widespread extant formats[1] or in nov-
el new designs[2]. The intent is that much of a medium-scale applic-
ation can be built by configuration and combination of documents
and document fragments, all control declared entirely within the
documents themselves. Such documents will include several differ-

ent ‘spaces’ such as presentation, content, data and behavioural
response, as well as attachment to external resources and workflows.
XML representations and technologies are critical parts of most con-
templated designs.

Our research raised the problem of how and where to define the
vital commonality amongst such documents in an application, espe-
cially on coherence of appearance (‘branding’) and representation
of internal state and state-change mechanisms. This paper covers
the issue of defining a representation and mechanism for relating
the common behaviour and presentation, placing such representa-
tion in the documents themselves. We start by describing the main
document model and operations thereon and then introduce our
model of templating. We assume familiarity with XSLT[3].

1.1. Example Document Model
Our simplest document is defined by a single self-contained XML
tree - all the ‘state’ of a specific instance of such a document is con-
tained within that tree, as well as all necessary declarations about
the document's behaviour

1
. Thus a document that had been bound

to some variability (e.g. a specific customer) contains somewhere
within it all necessary information for that customer. Apart from
existential operations (create, delete) our design supports two
primary operations on a document:

Presenting: generating a view of the document may involve a
requested format or channel characteristics and other paramet-
ers such as the role or permissions of the viewer. The document
contains declarations about how to respond to such requests:
alternate presentations for different roles, interaction elements
which could trigger changes of state, projections of other parts
of the document's state and simple arrangements of layout.

Updating: external events may cause a document to update its
state in response

2
. Documents are expected to contain declar-

ations on how (and whether) to modify themselves as a result
of such an event. For example an event/request might be ‘change
variable v1's value to 1001' - our expectation is that of a closed
object model - the document contains information about vari-
able v1 (if it exists) and may decide to honour the change request;
if the variable is described as read-only then the request will pre-
sumably be denied (as indicated somewhere around the variable
inside the document); if it is rewritable then the value element
will be rewritten (and other consequences propagated); if it is
single assignment then the assignment type indication for that
variable will be altered to read-only after the update.

1
In practice documents will be held in multi-resource containers

(such as ZIP) with unique naming of ‘parts’ - this can be placed
in one-to-one correspondence with a tree
2
How that document has been registered for such notification is

another matter. It could be a request directed from a user, anoth-

er document, some time ‘alarm’. ..

<doc title="Sample1">
 <variable name="v1" update="input">1234</variable>
 <presentation>
 <p>Introductory paragraph in document <xsl:value-of
 select="@title"/>
 </p>

 Some list item
 Item with v1=<val select="v1"/>

 </presentation>
 <update>
 <template match="presentation//li[last()]"
 guard="$event[@name='addList']">
 <copy-of select="."/>
 New list item
 </template>
 </update>
</doc>

Figure 1.A simple document with a state variable

Figure 1 is a simple example document, defined in XML, contain-
ing a simple variable (with some properties), a description of a
(mostly HTML) presentation and a partial program to update the
document in response to some declared event, in this case addList.

1.2. Generating Presentation & Updating State
The key is to build appropriate programs that will generate a
presentation or an updated version of the document in question,
modifying these programs in response to the declarations buried in
those documents. We assume that those declarations may contain
programmatic elements in some canonical language - in our case
XSLT. Figure 2 shows the approach:

Figure 2.Generation of a document presentation and document
update

For the presentation, we search for the presentation definition and
build an executable (an XSLT transform) which is then executed
with the original source document as the principal argument, and
characteristics of the device channel as additional parameters. This
produces an output in some final format, and thence to a viewable
image either through a client (e.g. a web browser) or a server where
a grounded geometry form such as PDF or an image is formed. The
simple output from our example is shown lower-left in Figure 2.

The presentation definition contains an XSL fragment, which inter-
polates the value of the document's title (attribute), but the variable
interpolating element val, after the ‘v1=’, is not used (it's actu-
ally in the presentation but ignored by the web browser) as there
is nothing that ‘understands’ that concept, nor the link to the vari-
able representation. The styling of the rest of the document is set
by HTML and browser defaults.

Now we update the document in response to some event. Again we
assume it may contain programmatic elements describing specif-
ic methods of update, in our example responding to an addList
event by adding a new item just after the last item of a list. Pro-

cessing is similar: extract the update definition from the document,
convert it into an executable program and run it with the origin-
al document and the event as principal arguments

3
. The result can

be in several forms - in the diagram we assume it is an updated
document, but it could equally well be some definition of a work-
flow of which a new value for the document is one component. The
presentation of the updated example is shown lower right in Fig-
ure 2. Note that the document is still able to respond to addList
events, increasing the lists by one item per event.

These basic mechanisms are highly flexible, but to make useful
applications we need coherent presentational styles and behaviours
across a set of documents. In our example we might wish to:

Style text elements

Exclude or modify certain types of element.

Add some common additional content

Use variable as the declaration of a document-instance-
specific state variable and interpolate its current value into a
presentation (i.e. implement val)

Update such variables coherently across many documents.

To do this we add dynamic, cascaded templating declarations to the
documents and implement with recursion of the basic approach.

2. TEMPLATES IN PRESENTATION
Let's assume that we want a common style with some sidebar mater-
ial, top-level paragraphs emboldened, alteration of the list number-
ing, variable values interpolated through the val instruction and
an input form for a variable marked as updateable. That is we'd actu-
ally like our sample1 document to appear as:

Figure 3.A templated document presentation

Some of these (the emboldening and the styling of the list elements)

3
The update transformer should implement sensible defaults, such

as providing identity transforms, so that the update definition in the
document only need describe parts that change during update.

could be handled by simple attachment of a CSS [4] stylesheet, but
the construction of the sidebar requires altering the document topo-
logy (surrounding the original content with a table cell), and the
interpolation of the variable value requires some form of search of
the document. Our solution is firstly to attach a template Template1
(by reference) to the document. The template looks something like:

<doc title="Template1">
 <metadata>
 <showVars/>
 </metadata>
 <presentation>
 <style> p { font-weight: bold; } </style>
 <table frame="box">
 <tr>
 <td style="background-color:pink">
 <p>Content
added
from

 <xsl:value-of select="@title"/>
 </p>
 </td>
 <td>
 <TEM:apply-templates select="//presentation/*"/>
 <xsl:if test="//metaData/showVars">
 <TEM:apply-templates select="//variable"/>
 </xsl:if>
 </td>
 </tr>
 </table>
 <TEM:template match="val">
 <TEM:value-of select="$originalDocument//
 variable[@name=current()/@select]"/>
 </TEM:template>
 <TEM:template match="ol">
 <ol type="A">
 <TEM:apply-templates select="*"/>

 </TEM:template>
 <TEM:template match="variable[@update]">
 <form>... <input type="text">...</input>
 </form>
 </TEM:template>
 </presentation>
 <update>...</update>
</doc>

Figure 4.Presentation in a simple templating document

The template is still a document, but its presentation contains not
only XSL programmatic fragments, but additional elements in a sep-
arate namespace (prefixed TEM). The semantics of these are the
same as those of the usual (XSL) presentational program, but they
operate in a different phase and with a different source. Some of
these are independent templates, others (apply-templates in
this example) are instructions to interpolate the intermediate
presentation into the result. As the semantics are that of XSLT, con-
siderable flexibility is supported - for example variables within the
display could be sorted by use of TEM:sort directives.

These two spaces (XSL and TEM) can be intermingled and are
executed in sequence. The XSL operates with the templating doc-
ument as source producing a result which may contain TEM com-
ponents. In our example the existence of a metadata directive
showVars controls whether automatic variable updating should
be included. (Template1 could contain update code that would allow
this directive to be deleted or inserted, enabling ‘central’ control
of variable updating - as the templates are consulted dynamically
this will work for all documents exploiting this template).

A program is then constructed from that intermediate result, ‘warp-

ing’TEM components into the XSLT namespace and then executed
with the templated document's presentation result as source. (There
are some additional parameters available - $originalDocument
allows access to the source tree of the original document.) The
implementation is shown in Figure 5:

Figure 5.Template operation in presentation

The template may itself require a further template - then the pro-
cess recurses, passing the accumulated final presentation as an argu-
ment. In this way an application may use a set of branding tem-
plates that each depend upon some core ‘behavioural template’
which might implement a coherent state-variable system for all doc-
uments in the application. There is more information available - in
particular it is known at the point of generating a presentation as
to whether this document is acting as a template for another doc-
ument or is standalone - this could be exploited to generate differ-
ent projections. For example a branding template viewed ‘stan-
dalone’ could generate examples of the different styles it contains.

What we've presented so far has a single thread of templates. We'll
probably want to handle composing from several different template
sources. If the programmatic definitions are functional (as in XLST),
then we can merge elements from additional templates into the mix-
ture.

3. TEMPLATES IN UPDATE
There are two different approaches to using templates in updating
a document: either some similar recursively nested approach or a
flat method where all the constructional elements from reachable
templates are collected into a single program. Which is preferable
depends upon whether the templates themselves are required to alter
their own state. In our examples so far the templates are considered
invariant and only the state of the ‘leaf’ documents changes, so we
use the latter method: collect all updating fragments through the
template tree when forming the updating program.

Figure 6 shows the updating fragment of our template example. The
component rewrites the value of a variable if an (event) paramet-
er names that variable as a target:

<doc title="Template1">
 <presentation>...</presentation>
 <update>
 <template match="variable[$param[@name eq
 current()/@name]]">
 <copy>
 <sequence select="@*"/>
 <value-of select="$param[@name eq
 current()/@name]/value"/>
 </copy>
 </template>
 </update>
</doc>

Figure 6.Update description of the templating document

The predicate in the template match ensures that only a suitably
named variable is targetted. All template program fragments are
considered to have similar priority - overloading and relative pri-
ority will be needed eventually. In the alternative approach, suit-
able when the templates have their own mutable state, and the res-
ult of the update is a ‘workflow’, we take the result of one stage
as an input to the next templating stage, building up a composite
workflow that may eventually end up modifying several documents.
This also allows us to have deeper templates overriding decisions
taken closer to the document instance.

4. DISCUSSION
This method of defining and implementing templates may seem
rather complex and if this were merely limited to presentation it
might be, but the power comes from the same template definition
chain being used for document updating, meaning that a deeper tem-
plate can co-describe both presentational and state-changing beha-
viour. Our example uses settable document-borne variables, but the
underlying system (including the system transformers) has no know-
ledge of the existence of such variables, nor how they are repres-
ented. This is entirely described in the lowest-level templates - how
to process updates and how to interpolate values into presentations
(strictly how to generate the correct presentation for an agreed inter-
polating instruction).

As examples of the power of this approach, one of our applications
added vector and structured variables into its documents, another
added a full transclusion support system as a single low-level tem-
plate document[5], both without alteration to the underlying plat-
form.

Of course there are distinct similarities with an object-oriented
design approach. Essentially we are much coarser-grained, exploit-
ing functional programming properties and with a different dynam-
ic system of inheritance. What we need from the combination of
platform and document representation is agreement on:

discovery, syntax and semantics of document-embedded pro-
gram fragments for presentation and update

canonical description of additional parameters for updating and
presentation programs: events for update, device characteristics
and ‘roles’ for presentation.

canonical description of the result of executing these programs,
e.g. presentation in a small number of standard formats or
description of a consequential ‘workflow'

Declaration of template linkages within a document

Consistent inter-document naming schemes.

Though this could be acheived in many ways, using XML-based
techniques with reserved namespaces, attribute decorations and
XSLT functionality makes implementation relatively easy.

5. PRIOR ART
Templates have long been used as the basis of document editing
and publishing, typically in three roles: i) a starting point for the
authoring of a new document, ii) the declaration of a named com-
mon set of styles and iii) the definitions of common constructs as
macros - (parametric) sequences which effectively add some higher-
level aspects to the ‘language’ of the document.

These roles are actually rather distinct but confusingly ‘template’
is often used for all three - some tools support only some of these
aspects. MSWord and similar use templates for authoring initial
states and common style sets only, TeX [6] and its precursors sup-
port macros and style sets.

The most common documents using ‘active templates’ are those
used for ‘mail merge’ in word processors like MSWord or in VDP
systems like Dialogue[7]. In this case the template is created with
reserved structures (often with specialist field codes) to indicate the
presence of a variable interpolation point and how the value of the
variable should be interpolated and the platform (e.g. the MSWord
application) executes the interpolation against a number of well-
understood input forms, usually with a user-defined mapping. But
in none of these cases can the form of the interpolation be exten-
ded or modified by document-borne declarations.

6. STATUS, FUTURE & THANKS
The architecture discussed in this paper is being used for experi-
ments on active documents. Being able to add functionality purely
in documents helps experimentation, such as generating audit trails
and debugging by loading extra documents. In future we will need
to refine the approach for using multiple templates, and updating
documents deep in the templating chain.

The authors thank Roger Gimson for suggestions on the structure
of this paper and Angelo di Iorio for exercising the approach.

7. REFERENCES
[1] Boyer, J. Interactive Office Documents: A New Face for Web

2.0 Applications . In Proceedings of the 2008 ACM Symposi-
um on Document Engineering. 2008.

[2] Birman, K. et al. Edge Mashups for Service-Oriented Col-
laboration . IEEE Computer. Vol?, 90-94. May 2009.

[3] W3C, World Wide Web Consortium XSL Transformations
(XSLT) Version 2.0 . http://www.w3.org/TR/xslt20/. 2007.

[4] W3C, World Wide Web Consortium Cascading Style Sheets,
Level 1 . http://www.w3.org/TR/CSS1. 1999.

[5] di Iorio, A. and Lumley, J. From XML Inclusions to XML
Transclusions . In Proccedings of the ACM Conference -
Hypertext 09. 2009.

[6] Knuth, D.TEX the program. Addison-Wesley Pub. Co., Read-
ing, Mass. 1986.

[7] Exstream DialogueLive . http://www.exstream.
com/Products/DialogueLive/. 2008.

