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Modern mainstream programming languages distinguish between "atomic" (or sometimes "volatile")
variables, which support concurrent access, ordinary data accesses with well-defines semantics. Concurrent
accesses to an ordinary data variables, if one of those is an update, is defined as a data race. This
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crashes, hangs, and inexplicably and completely wrong answers. These specifications, combined with
implementation realities, make it infeasible to exploit "benign" data races to obtain performance, even if we
are willing to tolerate approximate answers. Furthermore, even if we happen to get lucky, and code with
data races happens to execute correctly with some compiler, the presence of atomic operations in languages
like C and C++ means that data races provide at best inconsequential performance advantages and, in our
experience, no scala bility advantages at all.
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Abstract
Modern mainstream programming languages distinguish be-
tween “atomic” (or sometimes “volatile”) variables, and or-
dinary data. Atomic accesses are treated as synchronization
constructs, and support concurrent access with well-defined
semantics. In contrast, concurrent accesses to ordinary data,
if at least one access is an update, constitute a data race.
Code with data races does not have well-defined semantics.
Usually such code may fail completely when recompiled or
run on a different operating system version. In C and C++
data races are equivalent to assignments to out-of-bounds ar-
ray elements; any data race can result in arbitrary failures,
including application crashes, hangs, and inexplicably and
completely wrong answers.

These language specifications, combined with implemen-
tation realities, make it unsafe to exploit “benign” data races
to obtain performance, even if we are willing to tolerate ap-
proximate answers. Furthermore, even if we happen to get
lucky, and code with data races happens to execute correctly
with our current compiler, data races provide at best inconse-
quential performance advantages over atomics. In fact, there
are interesting, and probably common, cases in which data
races provide only a minor performance advantage, even
over pervasive locking to avoid them, at sufficiently large
core counts. We demonstrate such a case.

1. Context
The call-for-papers for the “RACES – SPLASH 2012 Work-
shop on Relaxing Synchronization for Multicore and Many-
core Scalability” [21] states “A new school of thought is
arising: one that accepts and even embraces nondeterminism
(including data races), and in return is able to dramatically
reduce synchronization, or even eliminate it completely.”

This is a preliminary version of the work. The final version of the work is expected to
appear in RACES ’12, RACES - SPLASH 2012 Workshop on Relaxing Synchroniza-
tion for Multicore and Manycore Scalability, Oct 21, 2012, Tucson, AZ

There has also been much other discussion of “benign data
races”, including for example [20]. A Google search for the
phrase “benign data race” returns thousands of results.

2. Introduction
Conventional multithreaded applications perform nondeter-
ministic operations. Often that nondeterminism is inherent
in the application. For a parallel system that processes large
volumes of on-line ticket orders, it is not meaningful to re-
quire that we deterministically choose which customer gets
the last ticket.

In other cases, nondeterminism may be hidden from the
user. For example, memory allocators return addresses that
are dependent on the interleaving of allocation calls, and
those addresses typically affect hash functions and hence the
layout of hash tables, etc. These typically do not affect the
program output, but enforcing such a restriction seems im-
practical. For example, it would prevent us from printing de-
bugging statistics summarizing the occupancy of hash buck-
ets.

There has been recent work on deterministic execution of
conventional multithreaded programs (cf. [3, 8]). But such
systems reduce performance in order to ensure determinism,
especially at higher core counts. And my experience has
been that nondeterministic execution significantly increases
the number of observed bugs. I believe such approaches
tend to trade easier debugging for appreciably worse test
coverage.

Other recent work accepts nondeterminism, as I do, but
confines its impact to program sections that really require
it. [16] This is much more consistent with the direction we
pursue here.

Although tolerating nondeterminism, in various forms,
can clearly reduce synchronization overhead, and improve
performance, data races are an entirely different matter. Data
races invalidate core semantic guarantees provided by the
programming language and compiler. In the presence of data
races, it becomes impossible to reason about program be-
havior. As we show in Sections 5 and 6, simply removing
data races from programs that happen to work with them,
typically does not worsen scalability, defined informally as
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the number of processor cores we can effectively take ad-
vantage of. And, in the case of C11 and C++11, the absolute
performance cost of removing data races from racy programs
is also essentially zero.

I first argue that reasoning about programs with data
races is impossible. I make this argument from two different,
redundant, angles: First, language specifications disallow
data races. Second, I argue that programs with data races
can, and do break in practice, where “break” can include
totally unexpected behavior, not merely reading a slightly
obsolete value. And there are strong reasons to believe that
such breakage becomes more likely and important as code
is recompiled with more modern compilers. Finally, I briefly
summarize how atomics in C11 and C++11, and volatiles in
Java, allow data races to be avoided at near zero performance
cost.

Most of these arguments are not terribly new (cf. [7, 1]). I
recast them in the context of this workshop and further mo-
tivate them with some new small, but interesting, empirical
results.

3. Data races vs. programming standards
For purposes of this discussion, I use a slightly informal ver-
sion of the standard definition of a data race: A memory lo-
cation is an any independently updateable block of mem-
ory, typically a scalar variable or object field. Detailed defi-
nitions vary. Posix [13] threads leave it implementation de-
fined; Java, C11, and C++11 give precise definitions. Two
memory accesses (loads or stores) conflict if they access the
same memory location, and at least one of them is a store.
Two accesses constitute a data race if they conflict and can
occur simultaneously.

We have a long tradition of disallowing data races in
programming language environments that support threads.
Some older specifications did not very explicitly address
shared variable semantics, but the rest have generally been
quite clear on this issue, even if they lacked precision in cer-
tain other respects [4]. The most notable examples follow:

The 1983 ANSI Ada standard [25] states:

“For the actions performed by a program that uses
shared variables, the following assumptions can al-
ways be made:

• If between two synchronization points in a task,
this task reads a shared variable whose type is
a scalar or access type, then the variable is not
updated by any other task at any time between
these two points.

• If between two synchronization points in a task,
this task updates a shared variable whose task type
is a scalar or access type, then the variable is nei-
ther read nor updated by any other task at any time
between these two points.

The execution of the program is erroneous if any of
these assumptions is violated.”

Every Posix standard [13] since 1995 has stated:

“Applications shall ensure that access to any
memory location by more than one thread of con-
trol (threads or processes) is restricted such that no
thread of control can read or modify a memory loca-
tion while another thread of control may be modifying
it.”

The C11 [14] and C++11 [15] standards state:

“The execution of a program contains a data
race if it contains two conflicting actions in differ-
ent threads, at least one of which is not atomic, and
neither happens before the other. Any such data race
results in undefined behavior.”

This “undefined behavior” treatment is identical to that
afforded to an out-of-bounds array assignment. It does not
just mean that a racing load can read an arbitrary value; it
means that any behavior whatsoever is allowed. This is often
informally described as “catch-fire” semantics.

Java is notably different from all of the above. It gives a
simple guarantee [10] along the above lines:

“A program is correctly synchronized if and only
if all sequentially consistent executions are free of
data races.

If a program is correctly synchronized, then all ex-
ecutions of the program will appear to be sequentially
consistent.”

However, it then proceeds to provide a very complex se-
mantics for programs, including those with data races.1 Un-
fortunately the semantics for data races are now known to
have serious deficiencies. In particular, they are inconsis-
tent with compiler optimizations commonly implemented by
Java virtual machines. [22, 2] It appears that clean specifica-
tions for data races are fundamentally at odds with common
compiler optimizations which assume that variables do not
change asynchronously, and there is no accepted solution to
the Java specification problem. Thus the semantics of Java
data races are supposedly defined, but not, in fact, under-
stood.

In the absence of data races, and without use of the loop-
holes we discuss below, all of the above arguably provide
simple sequentially consistent [18] semantics2, though this
is much clearer for Java, C11, and C++11 than it is for the
older standards.

1 This was primarily motivated by the very legitimate need to provide some
guarantees for untrusted code running inside a trusted program. Perfor-
mance considerations were a secondary issue.
2 And data races are defined with respect to those same sequentially consis-
tent semantics.
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4. Data races vs. compilers
There are excellent reasons for allowing arbitrary misbehav-
ior in the presence of a data race. Many common compiler
optimizations result in data race behavior that is not easily
explained to a programmer who is not a compiler expert. A
thorough analysis of how this may happen for essentially all
kinds of so-called “benign” data races is given in [5]. Here
I present only a few examples to illustrate some common
problems.

Perhaps the most common compilation surprise does in-
volve only the value read in a data race, but results in no
progress whatsoever, because the value read is always the
original one. This commonly happens when the original
value is cached in a machine register.

For example, consider a simple flag f which is set by one
thread, and waited for by another, with the loop:

while (!f) {}

Most compilers, with optimization enabled, would ob-
serve that f is loop invariant, and hence can be read once
outside the loop. Thus the code is transformed to

r = f; while (!r) {}

where r is a register. If f is not already set when the loop
starts, this becomes an infinite loop, which most probably
hangs the application and prevents any further progress.

The fundamental problem here, as in all other cases, is
that compiler optimizations assume that variables not ex-
plicitly modified don’t change. Language definitions support
this assumption; by violating it, the programmer lies to the
compiler, causing it to operate under false assumptions.

In the above case, the code behaves as though a single
valid, though very obsolete, value is read from f. In other
cases, program behavior is harder to explain. Consider:

{

bool r = x; // read shared var.

if (r) y = new T();

... // r not modified.

if (r) y->f = ...;

}

The compiler may load r from x before the first condi-
tional, decide it needs to spill r between the conditionals,
and reload it directly from x before the second conditional.
If x was modified by a race in the interim, the allocation may
not be executed, while the assignment to f is.

Other data-race induced issues include:

• Counters incremented by only one thread appear to de-
crease in value because an older, previously loaded, value
is reused by the compiler or hardware.

• A value is read with two separate load instructions, or by
two separate memory transactions, resulting in a partially
updated integer, or possibly even pointer.
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Figure 1. Parallel Eratosthenes Sieve to 108

• In C++, wild branches through not-quite-initialized method
table pointers.

Hidden data races in programs not only confuse compil-
ers, they also confuse human readers. In a data-race-free
program a synchronization-free code section s is atomic.
A thread observing or modifying an intermediate state of s
would have to race with s. We use that observation routinely
when reasoning informally about programs. When analyzing
an assignment x = y in C, we don’t have to ask how large
x is, or how many load and store instructions are required to
implement the assignment. We can treat it as a single atomic
operation because of the data-race-free restriction.

Any data race violates this atomicity property. Thus such
data races should be clearly labeled in the source code to
keep the code comprehensible to human readers. I argue in
the next section that for C11 and C++11, if we are willing
to annotate data races, we can eliminate them just as easily,
with essentially no added cost. By doing so, we both make
the code more readable, and avoid the risk of unexpected
compiler optimizations.

5. Data races rarely help scalability
Protecting write operations to x with a lock specific to x in
order to avoid data races doesn’t qualitatively hurt scalabil-
ity. Even without synchronization, write accesses to x are ef-
fectively serialized by the cache coherency protocol. Every
write to x needs to acquire exclusive access to the cache line
holding x. If x is protected by lock lx, we need to acquire
exclusive access to lx, possibly a small number of times, in
addition to x. Each access to x effectively becomes more
expensive, but there is no reason to expect the overhead to
increase with the number of cores or threads; what used to
be a single cache line acquisition becomes a small constant
number of cache line acquisitions.

This effect is illustrated in Figure 1. This gives execu-
tion times in seconds for a variant of the parallel Sieve of
Eratosthenes program from [4], in which bits are set uncon-
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Figure 2. Parallel Sieve to 108, expanded vertical scale

ditionally even if it they were already set, thus making writes
dominant.3 The main loop nest is

for (my_prime = start; my_prime < SQRT;

++my_prime)

if (!get(my_prime)) {

for (multiple = my_prime;

multiple < MAX;

multiple += my_prime)

set(multiple);

}

where MAX is 108 and threads are assigned consecutive
start values beginning at 2. In this version, each entry in
the sieve array accessed by get and set is a separate byte,
so that individual entries can be independently updated. The
benchmark was run on an HP DL785 32-core server con-
taining 8 quad-core 2.2GHz AMD Opteron 8354 processors
running RedHat Enterprise Linux 5.2.4 Each configuration
was run three times, and point for all results are included.

Figure 2 repeats the results of Figure 1 with an expanded
vertical scale to separate results for higher processor counts.

The top (blue circle) set of measurements gives results
with individual sieve entries protected by one of a large
number of locks. Entries are mapped to locks, and these are
acquired and released in set() (and get()). The bottom
(red) measurements use ordinary load and store instructions
as would be generated by a variant with races. I manually
confirmed that the compiler, in this case, generates correct
code in spite of the data race. (The middle measurements are
addressed in the next section.)

3 The underlying problem is similar to mark bit handling in a parallel mark-
sweep collector, though there we would always test the bit before setting
it. I focus on the write-dominated version to simplify the issues for now.
If reads are involved, the techniques from the next section become more
important.
4 The processors are connected via 1 GHz Hypertransport links. Each core
has 512KB L2 cache and each processor has 2 MB shared L3 cache. This
is the highest core count machine I had convenient access to. It is not the
latest model. I would be surprised if other modern x86 machines behaved
qualitatively differently.

Clearly the lock-based version is slower, as expected. But
the lock-based version actually benefits substantially from
more processors, exhibiting a speedup, relative to the same
code running on a single thread, of more than a factor of
11 on anything close to the full number of processors. On
the other hand, the racy version speeds up by less than
a factor of 3, and the two approach each other at higher
thread/processor counts. In a sense, the synchronized pro-
gram scales better than the racy version. I conjecture that
this is due to memory bandwidth limitations. There are many
locks, but due to the mapping scheme, locks are reused many
times before being evicted from the cache.5 The data itself
sees much less reuse.

Lock-based synchronization does not limit scalability;
contention does. This benchmark generates relatively little
contention on any specific piece of data. However all threads
contend for hardware memory bandwidth.

Note that this benchmark produces a deterministic output,
but its internal behavior, and even the total amount of work
performed, is highly nondeterministic. Which thread pro-
cesses multiples of which my prime prime value is schedule
dependent.6 Since locks are held for a single memory access,
their purpose is only to avoid data races and the associated
unpredictable compiler and hardware optimization effects,
not to enforce determinism.

The situation with potentially racing read accesses is
more complicated, but not likely to be qualitatively differ-
ent. Simply protecting a read access to x with a mutex or
traditional reader-writer lock adds a write access to the lock,
where previously there was only a read access. That may in-
troduce contention where otherwise all cores could have had
concurrent access to the same shared cache line. However, if
no actual contention exists without the lock, then either only
one thread is accessing (the cache line containing) x, or there
are very few writes to x.7 In the former case, the lock adds
no contention. In the latter case, we can use the techniques
from the next section, possibly combined with techniques
like RCU (read-copy-update [19]) or seqlocks [12, 17, 6] to
avoid writes to locks for otherwise read-only operations.

So far I’ve argued that data races are not helpful in im-
proving speedup relative to one or two threads running the
same code. But our data clearly also shows that on an ab-
solute scale, i.e. the one that really matters, locks to prevent

5 The mapping scheme looked somewhat like an ad hoc hash function,
shifting the bit position right by 8 bits, and then xor-ing in the low 10 bits
of the position. We later determined that somewhat better results can be
obtained by simply shifting the bit position right 12 or 16 bits. The mapping
and lock locality significantly affect the results.
6 This is a possible explanation for the somewhat variable execution times
under ostensibly identical conditions.
7 If there are no potentially concurrent writes to x at all, no lock is needed
in any case.
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data races are still quite expensive, though sometimes pri-
marily at lower core counts.8

6. Data races no longer help performance
In environments like traditional Posix threads, locks are the
usual mechanism for avoiding data races, and there often
were no other real options. Modern languages introduce
other mechanisms to avoid data races at less cost. C++11[15]
and C11 provide atomic objects. Java provides volatile
fields and java.util.concurrent.atomic. I will refer to
them generically as atomics. Atomics can be safely concur-
rently accessed without introducing data races. By default
they behave as though each access were individually pro-
tected by a lock specific to that atomic; program behavior
remains sequentially consistent even in the presence of con-
current accesses to atomics.

Atomics cannot be used to ensure atomicity of longer
code sequences; they provide atomicity for only a single ac-
cess. In many cases, this makes them much harder to use
than locks. But in a number of simple cases (e.g. “done”
flags, counters) they may be the most straightforward way
to express an algorithm. Since they can typically be imple-
mented directly using a combination of atomic hardware op-
erations and memory fences, the implementation overhead
is typically significantly less than that of acquiring locks
around a single access. And in the cases considered here,
there is never a need to add something like a write to a lock
object for read operations; hence there is no added cache line
contention. Default (sequentially consistent) loads (reads) of
atomics can be implemented on x86 processors with a sin-
gle MOV instruction. The upcoming ARMv8 [11] architecture
in addition provides direct hardware support for sequentially
consistent atomic stores.

In addition to the default behavior, all three of the
above languages provide for weakly ordered accesses to
atomics that allow the guarantees of sequentially consis-
tent behavior for atomics to be relaxed. Java provides
the (admittedly under-specified) lazySet() method on
(java.util.concurrent.atomic) atomics; C++11 and
C11 support explicit memory order specifications for ac-
cesses to atomics. These support faster operation at a huge
increase in the complexity of the programming rules that
must be understood by the programmer. But this complexity
is still far less than what is required to understand data-race
behavior. In particular, weakly ordered atomics:

• Prevent unexpected and unintended compiler transfor-
mations that unexpectedly break code, by informing the
compiler that concurrent access and concurrent updates
are possible.

8 I did not measure power consumption. It may well be that for power the
overhead persists at higher processor counts, but it clearly remains a small
constant.

• Provide portable, well-defined semantics, independent
of the hardware memory model and compiler idiosyn-
crasies.

• Provide some minimal visibility ordering guarantees that
prevent the most counter-intuitive behaviors. All variants
that I have mentioned guarantee at least “cache coher-
ence”, i.e. the accesses from all threads to a single mem-
ory location behave as though they were simply inter-
leaved. For example, a counter that is only atomically in-
cremented cannot appear to decrease, as it can with data
races and in a few hardware memory models.

• By providing well-defined portable guarantees, and ex-
plicit options to trade off performance against simpler
semantics, they at least force programmers to think about
memory ordering issues before writing code with serious
memory ordering bugs.

On x86 and ARM, C/C++ memory order relaxed

atomics can be implemented using the same instruction se-
quences as for ordinary memory accesses. They impose ex-
tremely minimal compiler constraints, and performance is
unlikely to be measurably worse than for racy code that
happens to compile correctly. On x86, the same is true for
memory order release and memory order acquire, as
well as Java atomic/volatile loads and lazySet(). [23]

Unfortunately, real support for C11/C++11 atomics is
just beginning to appear. However our previous experi-
ment also illustrates the expected performance. The racy
(“plain store”) code in this case happens to implement
memory order relaxed, memory order release and Java
lazySet() semantics, and is essentially what we would ex-
pect a reasonable compiler to generate for that case. The
middle green results reflect the cost of using atomics with
default sequentially consistent behavior, as they would be
implemented by a compiler that simply followed [23] with-
out sophisticated analysis. Each atomic store is implemented
with a trailing MFENCE instruction. This introduces signif-
icant overhead at low thread counts. But an x86 MFENCE

instruction, like many such instructions, can be thought of
as purely flushing a local buffer [24], and in our experi-
ence, processor performance characteristics match that view.
(The microbenchmark results in [6] lead to a similar conclu-
sion, across a wider variety of platforms and in a different
context.) For the sieve example, it appears that this local
overhead becomes increasingly insignificant at higher core
counts, as memory bandwidth becomes the bottleneck.

7. Conclusions
I’ve argued that data races incur substantial risk of com-
plete program failure, since they cause compilers to trans-
form programs on the false assumption that variables are
not concurrently accessed. At the same time they make pro-
grams less readable to humans by inducing them to make
similar false assumptions. Even if programs with data races
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happen to be favorably compiled, as they often are today, the
performance advantage over code that avoids those races is
currently smaller than you might think, and will approach
zero in the next year or two as implementations of C11 and
C++11 atomics become real. I expect the odds of “favorable
compilation” of data races to decline as compiler optimizers
increasingly leverage better defined memory models. [5, 9]
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