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Fig. 4. Impact of Parameters on the Tree

across topics for a document. More topics help capture noise
more precisely. So κ is a critical knob for the tree shape.

Figure 4(b) is quite different. Interestingly, the number of
nodes is not proportional with the number of topics. We create
the largest number of nodes with an average number of topics
and an average overlap threshold τ . Too few topics provide a
very coarse description for the documents making several ones
looking similar. Too many topics makes hard to understand
which documents are really similar and hence many docu-
ments may be placed in a single node. Hence, in both cases,
we do a poor job recognizing document relationships.

From the two graphs of Figure 4, we observe that the stricter
the generality constraint is the more nodes are created in the
tree. On the other hand, the number of topics in combination
with the overlap constraint can affect the number of tree nodes.

The number of nodes in the tree shows how a tree is
shaped between two extremes: all documents being grouped
in a single node versus each document being a different node.
Another parameter that describes the shape of the tree is
branching. Branching essentially shows how a tree is shaped
between being very deep (e.g. a chain) or very shallow. In
our experiments, we found that a better way to capture the
tree shape, instead of using the branching factor of a tree, is
by measuring the number of leaf nodes. The reason is that
the branching factor may vary across a tree and an average
value is not a good indicator. Our experiments on how the
tree generation parameters affect the number of tree leaf
nodes have showed that the number of topics and the overlap
constraint are defining factors: stricter overlap or fewer topics
lead to deeper trees. We do not show the corresponding graphs
due to space considerations.

Execution time. We now examine the effect of parameters on
the execution times. The score propagation time is negligible
in all experiments, and the topic model calibration time is
basically equal to the similarity graph computation time.
Hence, we ignore score propagation in the results below.
Figure 5 reports times for two datasets: the left column shows

V LDB (400 papers) and the right column shows CIKM (150
papers). We observe that in all graphs the topic model time
does not vary a lot compared to other components’ times, and
it increases relatively slowly with the number of topics. The
similarity graph computation always comprises an important
part of the total execution time and depends on the number
of documents: for V LDB, the average time is 100 seconds,
while for CIKM is 30 seconds.

From all the execution times, the tree generation time is the
most important. The reason is that the topic model computa-
tion and the similarity graph computation can be performed
offline for a document collection while the tree generation
can be performed online for the desired subset of documents
depending on the application. The tree generation is quite
efficient. The generation time grows with the number of topics
and the overlap τ but it shrinks with the generality parameter
κ. Increasing the topics or τ means that more documents may
be placed at the same node hence more pair-wise comparisons
are needed to check the document overlap. On the other hand,
shrinking κ shrinks the number of documents per node and
hence the number of pair-wise comparisons.

Our discussion above has focused on research papers. These
are long documents. Figure 6(a) shows how the size of
the document affects execution times based on two datasets
of 500 documents each: TKDE contains papers from the
journal, and NEWS contains short news articles. We observe
that similarity graph times are affected by the length of the
document: long papers contain many terms generating a big
document-term matrix. Tree generation is also longer for the
longer TKDE documents because the tree created has 190
nodes almost twice the size of the NEWS tree.

In the experiments above, we have considered the full
document for each paper. In practice, the introduction and
related work sections are sufficient to build the reading tree and
the execution times are significantly improved. We performed
experiments to compare the outputs in both scenarios: the
generated topics and trees were equally good (in Section VII-D
we explain how we compare different trees).

C. Scalability

We tested how our approach scales with the number of
documents for the DB and NEWS. Generally, we observed
that the overall execution time is less than 1 minute for 1000
documents, a relatively large number: 50 seconds for DB
when processing the whole article, and 6 seconds for NEWS.

Figure 6(b) shows execution times for three sets of doc-
uments from the NEWS dataset with size 1000, 10000
and 20000, respectively. We observe that as the number of
documents increases, the topic model and the similarity graph
computation are the most time-consuming components.

In practical scenarios, it does not make sense to compute
a reading tree over thousands or millions of documents and
present it to a user. In interactive scenarios, such as when
organizing the results of a search (e.g., on research papers),
the reading tree will be generated on the fly for a relatively
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Fig. 5. Impact of Parameters on the Time

reasonable number of documents (e.g., top 200). In these
interactive scenarios, our approach is very efficient.

There may be scenarios where it is desired to compute a
reading tree over thousands of documents and store it in order
to show parts of it depending on the user or the context. Then
such computation can be performed offline. As a trade-off
between disk space and time requirements, one may decide
to store only the output of the topic model and similarity
graph and compute a reading tree on the fly based on the
set of documents that a user has selected in an application.
For example, for short documents (or snippets) in Figure 6(b),
tree generation is still less than 1 minute for 10000 documents.

D. Reading Tree Evaluation

1) Evaluation Metric: In order to compare and evaluate the
structures generated from our algorithms, we need a way to
compare trees. Edit distance metrics, initially introduced for
string comparison, have been used to compare ordered trees
[34]. Ordered labeled trees are trees in which the left-to-right
order among siblings is significant. A distance between two
trees is computed by considering an optimal mapping between
two trees as the minimum cost of a sequence of elementary
operations that converts one tree into the other. An alternative
to mapping and tree edition is tree alignment [35].

Our reading order problem is different, and thus we are
not interested in how identical two trees are. We care for the
relative ordering of each pair of documents. To quantify the
tree difference based on the pairwise document orderings, we
first build the adjacency matrix A for a tree structure using
the following formula:
Aij =

1
numhops(di→dj) if there is a directed path from di to

dj ; otherwise Aij = 0.
Aij is the element of the adjacency matrix corresponding to
documents di and dj and numhops(di → dj) is the number
of hops from document di to dj .
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To measure the difference of two tree structures over a set
of documents represented by matrixes A and Â, we use the
mean squared error (MSE), which is defined as:

MSE(A, Â) = (
1

n

n∑
i,j=1

(Aij − Âij)2)

Figure 7 illustrates an example of how to compare tree
structures using MSE. In this example, A is the adja-
cency matrix of the ground truth, Âresult1 (Âresult2) is the
adjacency matrix of the tree result1 (result2). Since we
have MSE(A, Âresult1) = 0.2469 > MSE(A, Âresult2) =
0.1229, the tree structure result2 is better than result1
because compared with the ground truth documents are placed
mostly in the right order. There are two sources for the mean
squared error of result2. We observe that document d4’s
relative order is different in result2 compared to the ground
truth. In the ground truth, it is A(d1, d4) = 0.5 as the number
of hops from document d1 to d4 is two, while in result2,
Âresult2(d1, d4) = 1 as document d1 becomes direct parent
node of document d4. Moreover, the fact that document d2 is a
parent node of document d4 is completely missed in result2.

2) Using Wikipedia for Ground Truth: There is no ground
truth on the actual reading order for any set of documents. As
one strategy for evaluating our approach, we use the Wikipedia
hierarchy of categories to approximate the reading order for
Wikipedia pages. For example, “Cluster Analysis” is a subcat-
egory of ‘Machine Learning”. We assume that all the article
pages belonging to ‘Machine Learning” are more general and
should be read before articles in “Cluster Analysis”.

However, Wikipedia’s hierarchy of categories is far from
perfect. It contains errors, and cycles. To build our ground
truth, we start from the “Machine Learning” category and
expand 3 steps away in the category structure building a
hierarchy with no cycles. After removing empty categories
and articles, we have 118 categories, from which we random
select two articles out of all the pages from each category,
resulting in 236 articles in total.

We feed these articles to our system and we compare its
output to the ground truth using different parameter combi-
nations, τ = {0.5, 0.7, 0.9}, κ = {0.001, 0.005, 0.01} and for
20 topics. Table IV summarizes the results. The low MSE
suggests that our reading trees generate good reading orders.
For τ = 0.7, κ = 0.005, we obtain the best performance with
the minimum MSE = 0.1214.

Our actual algorithm performance may be better than
these MSE scores indicate, because the category hierarchy of
Wikipedia does not provide a perfect ordering. For example,
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TABLE IV
COMPARISON TO THE WIKIPEDIA GROUND TRUTH

τ = 0.5 τ = 0.7 τ = 0.9
κ = 0.001 0.1739 0.1279 0.1558
κ = 0.005 0.1366 0.1214 0.1625
κ = 0.01 0.1632 0.1738 0.1456

“Machine Learning Researchers” is a subcategory of “Machine
Learning”. Pages under “Machine Learning” cover the content
of machine learning algorithms and applications. However,
the pages under “Machine Learning Researchers” cover the
background of the person, personal history, etc.

3) Using Experts for Ground Truth Creation: As a different
evaluation strategy, we also asked experts to generate the
ground truth for different topics (Data Mining, Biology, Math,
and Arts) and sets of Wikipedia pages. For each set of
documents, we asked the opinion of two experts. Of course,
it is not possible to ask experts to create very large graphs, so
each tree created by an expert is around 20 documents. Also
we observed that on the same set of documents, two experts
may create different trees. This is reasonable, since there is an
amount of subjectivity in the problem. Our purpose is not to
create the exact same tree but create the same reading orders
as possible as captured by MSE.

We then compared our reading trees against the experts’
ground truth. Since for each set we had two trees as ground
truth, we compared the tree we generated to each one of them
and then take the average MSE as the final MSE for a
generated tree. The average MSE across the four topics is
0.18 for s = 10, τ = 0.9, κ = 0.001. We observed that
the Math tree had the poorer performance (MSE=0.3). We
believe that in Math other types of document relationships, e.g.
pre-requisites, may be more frequent than specificity relations.

4) User study: A third way to evaluate the results is to
have a user study, where feedback is collected from users that
evaluate the generated reading trees manually. This evaluation
method is effective only when the size of the tree is small,
and is hard to utilize when the output tree structure is large.

We created user studies for three scenarios: (a) research
scenario, where the purpose is to see research papers in
some logical order, (b) news editor scenario, where the tree
is presented to an editor for selecting articles to place in a
news publication and (c) search scenario, where the purpose
is to search pages related on a topic. For each scenario, we
use DB, NEWS, and the WIKIPEDIA pages for data
mining, respectively, and we pre-generated the reading graphs
for all the documents per case. We intentionally used the same
configuration, s = 40, τ = 0.9, κ = 0.001, for all datasets

because we wanted to see how good a single configuration
will be for different data.

For scenario (a), we asked 3 CS researchers and 2 students,
for (b) we asked 2 editors, and for (c) we asked 10 non-CS
researchers. For each scenario, we selected random subtrees
from the graph containing at most 15 documents, and we
asked the users to evaluate them by counting how many
documents they thought were in the wrong order. Each user
evaluated 4 trees and each tree was evaluated by one user.
The tree was represented graphically. Each node contained a
short description for each document in the node. Clicking the
description links opened the whole document allowing the user
to inspect the document.

The average number of misplaced documents per
tree reported was: 2.2 (DB), 2.9 (NEWS), and 2.5
(WIKIPEDIA). The respective percentages over the
document set size were: 14.6% (DB), 19.33% (NEWS),
and 16.66% (WIKIPEDIA). We observed that the
percentage was higher for the NEWS. It is likely that the
selected configuration was not optimal for this collection.
Still, the result were useful for the editors.

E. Topic Model Calibration

As a final note, we would like to discuss the effectiveness
of the score propagation method we use for the topic model
calibration. The topic model is a probabilistic model and
hence every time it is executed over exactly the same inputs,
its output may be different. In this paper, we utilize the
topic model calibration to compensate for the errors and
variations caused by the topic model. In order to justify its
effectiveness, we compare the trees generated with and without
score propagation.

For this purpose, we ran the tree generation algo-
rithm 11 times with all meaningful parameter combina-
tions of s = {5, 10, 15, 20, 25, 30, 35, 40}, and κ =
{0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.13, 0.15}. We compare
the tree generated in one of the last 10 runs with the tree
generated in the first run (which serves as a kind of ground
truth). Figure 8(a) shows the average MSE score and Figure
8(b) shows the worst. Each point corresponds to one of the
10 repetitions (shown on the x-axis) and is the average MSE
value of all parameter combinations (shown on the y-axis).

With score propagation, both the worst and the average
performance of the tree generation method are better. The
score propagation acts as a smoothing filter compensating for
the variations in the output of the topic model.
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VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed generating reading trees to
organize a collection of documents from general to more
specific content. We proposed a set of algorithms for topic
model calibration and tree generation. We evaluated the impact
of the various parameters of the problem for the tree form and
the performance of the approach. As there is no ground truth
for our problem, we applied different methods for judging the
result of the reading tree generation.

As future work, we would like to examine methods for
incrementally growing and refining a reading tree based on a
subset of known documents. Other future research directions
include considering other types of document relationship for
document sequencing, and personalizing reading trees for
different users.
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