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A function fix,y,2) of three variables may be visualized by examining
its isosurfaces fix,y,2) = t for various values of &z To display these
isosurfaces on a graphics device it is desirable to approximate them
with piecewise polygonal surfaces that are (1) geometrically good
approximations, (2) topologically correct, and (3) consist of a small
number of polygons. By topologically correct we mean that the
connectivity of the constructed surface matches that of the true
isosurface - any two points in the given sample are connected by a
path that does not pierce the constructed surface, if and only if they
are connected by a path that does not pierce the true isosurface.

We are interested in functions specified as the piecewise trilinear
interpolant of a uniform mesh of sample points. The "marching
cubes” algorithm of Cline et al. (1988) constructs a piecewise
polygonal approximation to the isosurface, satisfying conditions (1)
and (3) above, but not condition (2), i.e., the topology of the
constructed surface may be incorrect. The "dividing cubes" algorithm
of Cline et al. (1988) constructs a piecewise polygonal approximation
to the isosurface satisfying conditions (1) and (2) above, but not
condition (3), i.e., the constructed surface may not consist of a small
number of polygons. Here, we present an efficient algorithm that
constructs a piecewise polygonal approximation to the isosurface
satisfying all three conditions, i.e., the constructed surface is
geometrically a good approximation, topologically correct, and
consists of a small number of polygons.
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1 Introduction

Let f(x,y, z) be a function from [0, 1]* to [0, 1], where [0, 1] is the unit interval on the
reals. Let N be a natural number and let A = V(N-1). A uniform sample of f is a
three-dimensional array F of N 3 points such that for i, j, and k in the range
01,2...,N-1,

F@,j,k) = fGA, jA, kA).

We call N the sampling number and A the sampling interval. The sample F partitions
[0, 1P into (N - 1)* cubic cells.

We are interested in the problem of constructing a piecewise polygonal approximation
S, to the isosurface I defined by f(x, y, z) = ¢, from a given sample F and a threshold
value ¢.

The above problem is the abstraction of a data visualization problem that arises in
several diverse areas, ranging from computer aided tomography in medical applications,
to numerical simulations in fluid dynamics. See Fuchs et al. (1977), Hessellink and Wu
(1988), Christiansen and Sederberg (1978), Artzy et al. (1980), Cline et al. (1988) and
Wilhelms et al. (1990a). An alternative technique for visualizing such data is the
technique of volume rendering, as discussed in Drebin et al. (1988), Levoy (1988) and
Levoy (1991).

In visualization applications, the topology of the approximate isosurface is of
considerable importance, as illustrated in the following scenario. A user employs
isosurfaces for visualizing a sample, constructing piecewise polygonal approximations to
the isosurfaces without preserving their topology. When examining a particular
isosurface, the user notices an interesting topological feature, say, that the isosurface
consists of two disconnected components. The curious user zooms in for a closer and
more precise view of the surface, obtained by constructing an isosurface from a finer
sample of the function. The disconnected components now appear connected, i.e., the
topological feature vanishes. Such behavior is clearly undesirable, and will be
eliminated by preserving the topology of the isosurface.

A certain practical issue must be addressed by an algorithm that constructs piecewise
polygonal approximations to the isosurface; the number of polygons constructed must
be small in order to minimize the time required to render the polygons on a graphics
display device. It is reasonable to require that the number of polygons should be
O(M), where M is the number of the (N- 1) cells that intersect the isosurface

fxy,z) =1t



Combining the above, we can formalize the problem as follows.

We say that two surfaces A and B are approximate within A, if for every point a on A
there exists a point b on B such that b is contained in the cube of side 2A centered at
a, and vice versa.

Isosurface Problem

input: A uniform sample F of an unknown function f over a sampling interval A, and
threshold ¢ € [0,1].

output: A piecewise polygonal surface S such that,

(a) S approximates the geometry of I, i.e., S and I are approximate within A, where / is
the surface f(x,y,z) = ¢

(b) S and I have the same topology, ie., for every pair of sample points
u = (i14,j14,k14), and v = (i34, j,4,k4), u and v are connected by a path in
[0, 1P that does not pierce S if and only if u and v are connected by a path in [0, 13
that does not pierce I.

(c) S is of low complexity, i.e., S consists of O(M) polygons, where M is the number of
the (N - 1) cells of F that intersect I.

It is clear that without restrictions on the nature of the unknown function f, the
isosurface problem is ill-posed and possesses no algorithm. To remedy this, we can, for
instance, limit the function f to be representable exactly by a known interpolant of the
given data points. As it happens, the sampling number N is usually rather large, say
100, and the number of sample points is of the order of 10°. Consequently, the use of
smooth interpolants such as higher order polynomials or polynomial splines is
forbiddingly expensive. (Wilhelms et al. (1990a) discuss the use of higher degree
interpolants in isosurface construction.) Here, we settle for interpolation by the tensor
product linear B-spline, more simply known as trilinear interpolation. The trilinear
interpolant T interpolating the values of the function f at the vertices of a cube of side
A may be expressed as follows:

TG, y,z) = f(0,0,0) + [f(A,0,0)- f(0, 0, 0)]x/A +
[(0, A, 0)- £(0, 0, 0)]y/A + [f(0, A, A)- £(0,0, 0)]z/A +

[f(A, A, 0)- £(0, A, 0)+ f(4, 0, 0)+ £(0, 0, 0)]xy/A% +
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[f(0, A, A)- £(0, 0, A)+ £(0, A, 0)+ (0, 0, 0)]yz/A% +
[f(A, 0,A)- (0,0, A)+ f(A, 0, 0)+ £(0, 0, 0)]z/A% +
[f(A, A, A)- £(0,A, A)- f(A, 0, A)+ (0, 0, A)] wz/Ad -
[f(A, A, 0)+ £(0, A, 0)+ f(A, 0, 0)- £(0, 0, 0)] xyz/A3,

Given a uniform sample of N> points, the function f can be represented as a piecewise
trilinear function consisting of (N - 1)* trilinear patches interpolating the given sample.
Each patch is a surface in R%, and the entire ccllection of the (N - 1) patches is C°
continuous. For a given threshold ¢, the isosurface f(x, y, z) = t is simply the collection
of the surfaces obtained by setting T(x,y,z) = t, for each of the (N- 1)* trilinear
patches T that compose f. Thus, when f is restricted to be the piecewise trilinear
interpolant of the given sample, the isosurface f(x,y,z) = t is easily defined. There
remains the problem of constructing a piecewise polygonal approximation to the
isosurface, satisfying the requirements (a), (b), and (c) listed under the definition of the
isosurface problem.

As it happens, conditions (b) and (c) are difficult to achieve simultaneously, i.e.,
topological correctness is competitive with minimizing the number of polygons in the
approximation. Cline et al. (1988) give two partial algorithms for the isosurface
problem. Their first algorithm, the marching cubes algorithm, is simple, fast, and
constructs O(M) polygons. Unfortunately, the algorithm may produce isosurfaces that
are not C° continuous and, therefore, can never be topologically correct. Their second
algorithm, the dividing cubes algorithm, produces a large number of polygons, each
roughly the size of the resolution of the display device. Within the resolution of the
display device, the dividing cubes method eliminates the topological errors of the
marching cubes method, but it does so at an enormous computational cost.

The marching cubes algorithm can be modified to eliminate the C° discontinuities
using the methods of Wyvill et al. (1986) or Wilhelms et al. (1990a). (Also, in
Appendix A, we suggest a simple modification of the marching cubes algorithm that
achieves the same ends.) While these methods result in C° continuous surfaces, the
topology of the surface may still be considerably different from that of the true
isosurface.

In this paper, we present an algorithm for the isosurface problem for piecewise trilinear
functions. The algorithm constructs a piecewise polygonal approximation with O (M)
polygons while guaranteeing topological correctness. In a practical implementation, we
found that our algorithm was roughly 20% slower than the marching cube algorithm.
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Formal proofs are omitted in this abstract, and are relegated to the full paper. Instead,
we make heavy use of figures to explain the main ideas. To facilitate such, throughout
this paper we use an XYZ coordinate system oriented as shown in Figure 1.

2 Topological Ambiguities

A trilinear interpolant is uniquely defined by the values of the function at the vertices
of the cube. Thus, it is convenient for us to view the given sample of N3 points as
(N-1)? cubes, and examine the trilinear interpolants of each of these cubes. Consider a
cube with function values specified at each vertex. The trilnear interpolant T varies
linearly along each edge of the cube. Thus, for a given threshold ¢, linear interpolation
will give us the points of intersection of the edges of the cube with the isosurface
T(x,y,z) = t. Let us call these points the edge points. If we know how to connect up
the edge points into triangles, then we will have a polygonal approximation to the
isosurface. The manner in which the edge points are connected will determine the
topological properties of the isosurface within the cube.

An isosurface will partition the vertices of the cube in such a manner that the vertices
of the cube with function values above the threshold are isolated from the vertices of
the cube with function values below the threshold. For convenience, let us say that
vertices with function values greater than or equal to the threshold are black vertices,
and vertices with function values below the threshold are white vertices.! Hence, the
isosurface will isolate all the white vertices from the black vertices. In addition, it
might also partition the white vertices into several disconnected subsets amongst
themselves. Similarly, it might partition the black vertices into several disconnected
subsets. In the following, we use the term "topology of the isosurface” loosely to refer
to the above partioning of the vertices of the cube. For instance, Figure 2a shows a
cube with two black vertices and six white vertices. Two distinct topologies are possible
for such a coloring, and they are shown in Figure 2b.

Since there are eight vertices and each vertex may be colored white or black, there are
256 ways of coloring all the vertices. Owing to rotational symmetries, and the
complementary symmetry of interchanging the white and the black colors, the 256 cases
can be reduced to 15 base cases, Cline et al. (1988). These cases are shown in Fig. 3.

1. Throughout this paper, we lump "greater than” and "equal to" as one case. This simplification
overlooks some degeneracies in the topology of the isosurface.



For a particular threshold value ¢, we say two vertices are connected if we can connect
the two vertices by a path in the cube or on its boundary, such that the path does not
intersect the isosurface T'(x, y,z) = t. In the above, (a) if the path lies entirely on the
boundary of the cube we say that the two vertices are boundary connected; and (b) if
the path consists solely of edges of the cube, we say that the two vertices are edge
connected, and (c) if the path lies entirely on a particular face of the cube, the two
vertices are said to be connected on that face.

The following proposition is immediate.
Proposition 1: Two vertices are connected if they are edge connected.

Proposition 1 is sufficient to establish the topology of the isosurface for cases 0, 1, 2, 5,
8 9, 11 and 14 of Figure 3. For the remaining cases, the topology is partially
determined by Proposition 1. Figure 3 also shows the topology for the 15 cases as
determined by the application of Proposition 1. The heavy edges in the figure designate
edge connectivity.

Case 3 is one of the cases for which the topology is partially determined in Figure 3.
Two distinct topologies are possible for this case, as depicted in Figure 2. We now
outline a method for selecting between these topologies.

3 Saddle Points

The method is best understood in two dimensions. Consider the bilinear interpolant of
four function values specified at the vertices of a unit square. The equation of such an
interpolant is given by,

B(s) = £(0,0)+ [£(1, 0)- S0, 0 + [0, D- SO, 00 +
[F0.0+ 71, 1- 70, 0)- 10, D]

Suppose that we wish to construct the isocurve B(x, y) = ¢, for threshold . As before,
let us color the vertices white and black, with respect to the threshold r. There are
three possible cases, taking into account rotational and complementary symmetries.
These cases are shown in Figure 4a. The topology for cases 1 and 2 are unique, while
for case 3, there are two possible topologies. For case 3, the bilinear interpolant will



be as in Figure 4b, with a saddle point at (x;,y;). If ¢+ > B(x,,y;), then the vertices
with function values above ¢ will be disconnected by the isocurves. If ¢t < B(xy,y;),
then the vertices with function values below ¢ will be disconnected by the isocurves.
The case t = B(x,,y,) is the degenerate form of either of the above cases. Thus, the
topology for case 3 can be correctly determined by comparing the threshold with the
value of the interpolant at the saddle point.

Similar to the saddle point of the bilinear interpolant, the trilinear interpolant has
saddle points. The topology of the isosurface for a particular threshold can be
determined by comparing the threshold value to the value of the interpolant at the
saddle points. It is necessary to examine seven saddle points: one on each face of the
cube, and one in the interior of the cube. The saddle points on the face are called face
saddles, and the saddle point in the interior is called the body saddle. The values of the
interpolant at the saddle points are called the face saddle values and the body saddle
values, respectively. The calculation of the saddle points and the associated saddle
values are treated in Appendix B.

Proposition 2: Two diagonally opposite vertices on a face of a cube are connected on
that face if and only if at least one of the following holds.

(a) The two vertices are connected by a path of edges on the face.

(b) The function values at the two vertices, and the saddle value of the face, are all less
than the threshold.

(c) The function values at the two vertices, and the saddle value of the face are all
greater than or equal to the threshold.

With respect to a particular threshold ¢, let R be the set of all vertices of a cube with

the same color, say white. We can decompose R into mutually disjoint maxamally
boundary-connected components R,, R,, etc, such that

(@ RiYRy--* =R
(b) For each R;, every pair of vertices in R; are boundary connected.

(c) For all distinct pairs R; and R;, if u € R; and v € R;, u and v are not boundary
connected.

Proposition 3: Let R; and R, be two maximally boundary-connected components of a
cube. R; and R, are connected if and only if there exists u € Ry, v € R, such that uv
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is a body diagonal of the cube and one of the following holds.

(a) The function values at u and v, and the body-saddle value of the cube are all less
than the threshold.

(b) The function values at u and v, and the body-saddle value of the cube are all
greater than or equal to the threshold.

Using the above propositions, we can write the following algorithm for constructing a
topologically correct piecewise polygonal approximation to the isosurface T(x,y,z) = ¢
within a cube.

Algorithm saddle
input:
the function values at the vertices of a cube, threshold ¢;
output:
topologically correct piecewise triangular approximation
to the isosurface T(x, y, z) = t;
begin
color vertices with function value greater than
or equal to the threshold black;
color vertices with function value less than the threshold white;
Apply Proposition 1;
if topology is not fully determined then
compute face-saddle values;
apply Proposition 2 to construct maximally
boundary-connected components;
if topology is not fully determined then
compute body-saddle value;
apply Proposition 3.
end
end
compute edge-points;
link edge-points to construct triangles consistent with topology;
output triangles;
end

To illustrate the working of algorithm saddle, Figure 5 shows the computational tree
obtained when saddle is run on case 6 of Figure 3.



We can now use algorithm saddle to construct isosurfaces for an entire sample F. To
do so, it suffices to run saddle on each of the (N~ 1)> cubes composing F. This is
wasteful, since only M cubes will contribute to the isosurface and M may be much
smaller than (N-1)>. More efficiently, it is easy to see that the (N - 1)* cubes of F may
be preprocessed into an octree, so that for a given threshold ¢ it is possible to visit all
M cubes that intersect the isosurface in time Mlog(N). (Wilhelms et al. (1990b)
discuss the use of octrees at length and present some experimental data.) Algorithm
saddle is run on each of the M cubes visited. Notice that saddle runs in constant time,
producing no more than a constant number of triangles per cube. Also, the surface
composed of the collection of these triangles for all of the M cubes will be C°
continuous, except perhaps at the boundary of the data set. To see this, it suffices to
note that the connectivities on a face are determined only by the function values on that
face, and hence are common to both cubes sharing the face. For more on the
sufficiency of this condition, see Wilhelms et al. (1990b).

4 Conclusion

We presented an efficient algorithm for the isosurface problem for the restricted case
of piecewise trilinear functions. The surface constructed by the algorithm is
topologically correct, piecewise polygonal, and is guaranteed to have a small number of

polgyons.

Akin to trilinear interpolation over a cube, we have the class of trimonotonic
interpolants, wherein the weighting functions are arbitrary monotonic functions rather
than linear functions. It can be shown that our algorithm holds without modification
for the more general case of piecewise trimonotonic functions.

Lastly, we note that the method of saddle points can be also be used for the
determination of the topology of the isosurface of more complex interpolants such as
quadrics and cubics. Unfortunately, the computations are prohibitively expensive.

5§ Appendix A

Cline et al. (1988) give 15 base cases and the corresponding polygons to be used as a
table for the marching cubes algorithm. Unfortunately, their algorithm produces
surfaces with C° discontinuities or "holes", topological features that are inherently
impossible in the isosurface of a continuous function. This was formally noted by Durst
(1988). To eliminate these discontinuities, it suffices to follow a greedy algorithm, that



resolves topological ambiguities in favor of connecting white vertices. The algorithm
uses the 18 base cases of Figure 6.

Algorithm greedy_cube
input:

the function values at the vertices of a cube, threshold ¢.
output:

piecewise triangular approximation

to the isosurface T'(x, y, z) = ¢.

output topology favors connecting vertices with

function value less than threshold;

color vertices with function value greater than
or equal to the threshold black;
color vertices with function value less than the threshold white;
check whether the coloring corresponds to one
of the 18 cases of Figure 6;
if not, complement the white and black colors and check again;
compute the edge-points;
construct and output the corresponding triangles;
end

We can now use algorithm greedy_cube to construct isosurfaces for an entire sample F.
As mentioned earlier, the (N - 1)} cubes of F may be preprocessed into an octree, so
that for a given threshold ¢ it is possible to visit all M cubes that intersect the isosurface
in time Mlog(N). Algorithm greedy_cube is run on each of the M cubes visited. Notice
that greedy_cube runs in constant time, producing no more than a constant number of
triangles per cube. Also, the surface composed of the collection of these triangles for
all of the M cubes will be C° continuous, except perhaps at the boundary of the data
set. To see this, simply note that the connectivities on a face are determined only by
the function values on that face, and hence are common to both cubes sharing the face.

6 Appendix B

We now sketch the calculation of the saddle points of the trilinear interpolant in a
cube. For convenience, we write the trilinear interpolant T in the form:

Tx,y,z2) =ayz + bxy + oz +dx +ex+ fy + gz + h

10



The face-saddles are not true saddle points of 7, but are the saddle points of T limited
to each face of the cube. For instance, for the face x = 0, T reduces to the bilinear
interpolant on that face, and can be written

TO,y,z2) =gz + fy+g& + h

Setting
oT _ T _,
ay 0z ’

and solving, we find the saddle point at (0, - f /c, - g/c), with a saddle-value of k- fg/c.
Similarly, we can calculate the face-saddle values on the other five faces.

The body-saddle point is the solution to the system of equations

07

== = gz+by+dzte =
- P by e=0
a7

— =agzt+bxtcz+f =
3 az+bxtcz+f =0
oT

— = ay+cy+dxt+g =
0z g=0

If a = 0, the solution is given by:

_ ec-df-bg
2bd

- ec+df- bg
2bc

y=

- - ec - df+bg
2cd

The body-saddle value can then be obtained by substituting the above values for x, y,
and z in the equation for T(x, y, 2).

Ifa # 0, we have

172
= 1| _ s |Lbc-af)(ag-cd)
=il
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{dxtg)

y=- (ax+c)’

The body-saddle value can then be obtained by substituting the above values for x, y,
and z in the equation for T'(x, y, z).
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Figure 2: (a) Coloring a cube; (b) and (c) two topologically distinct isosurfaces for the coloring of (a).
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Figure 3: The 15 base case colorings for a cube. The heavy edges represent connectivity.
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Figure 4: (a) The three base case colorings for a square. (b) The bilinear interpolant for the last of the
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Figure 6: The 18 base cases for algorithm greedy_cubes.









