
A Beginner's Guide

to Developing with the

Taligent Application Frameworks

Joachim Laubsch

September 6, 1995

Application Engineering Department

Software Technology Laboratory

Hewlett-Packard Laboratories

1501 Page Mill Road, Bldg. 1U-14

P.O. Box 10490

Palo Alto, Calif. 94303-0969

laubsch@hpl.hp.com

(415) 857-7695

1

Internal Accession Date Only



Abstract

The conclusions of a three months learnability and usability study of Taligent Appli-

cation frameworks are presented in terms of a preparatory guide for a novice user.

It has been known that learnability of large object-oriented systems poses a serious

obstacle to adoption of object-oriented technology. Taligent frameworks face this

obstacle in particular. This paper was written to help you plan your learning path.

Keywords

Application development, application frameworks, learning of frameworks, Object-

oriented programming and design, Taligent frameworks.

Contents

1 Introduction 3

2 Framework Learnability 3

3 Frameworks and their Bene�t 4

4 A Roadmap to Learning Taligent Frameworks 6

5 Lessons Learned and Pitfalls to Avoid 8

5.1 Use architecture diagrams: Class and Object diagrams : : : : : : : : 9

5.2 Make an Implementation Plan : : : : : : : : : : : : : : : : : : : : : : 11

5.3 Use Taligent Idioms : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

6 Conclusion 14

2



1 Introduction

During a period of three months I learned to use Taligent application frameworks, in

particular the Presentation Framework and implemented a simple application. This

report summarizes some of the lessons learned, and points out sources of di�culties.

The next section explains why learnability is an important issue a�ecting the market

acceptance of frameworks. Section 3 gives a de�nition of frameworks and brie
y

characterizes Taligent's CommonPoint frameworks. Section 4 suggests a roadmap for

your learning path and section 5 gives guidelines for developing a �rst application

most e�ectively.

This report does not expose any of the frameworks, idioms, architecture diagrams etc

if these are covered by the CommonPoint 1.0 documentation (see [Tal95b],[Tal95e],

[Tal95a], [Tal95d], [Tal95g]). It is written not to require previous exposure to Tali-

gent's documentation, but includes references to the relevant sources, as well as some

references to foundational literature on frameworks, object-oriented programming,

and OOAD methods.

2 Framework Learnability

Why is learning a problem? Reporting from his experience of teaching SmallTalk

to engineers, Kent Beck stated in 1986:

\Becoming familiar with the ~250 classes in the SmallTalk image can be

a daunting task to a newcomer." [O'S86] p. 503

How will an application developer confronted with a system, larger by an order of

magnitude cope with the learning of its reusable parts? The learnability issue will be a

major factor determining the market acceptance of CommonPoint since in comparison

to competing products, its area of coverage is much larger. This applies as well to

objects of foundational services as well as at the application level. The following table

gives an indication of this by simply counting the number of classes:

Product Number of Classes

CommonPoint 1940

VisualWorks 745

OpenDoc 315

NextStep/OpenStep 128

MFC (MicroSoft) 131

Aside from size, complexity is increased due to the need for understanding interacting

classes. In a survey we conducted, learnability was mentioned as a main inhibitor

3



to framework use by developers familiar with frameworks (see [Lau95]), and early

developers with Taligent experienced \a sti� learning curve" even for experienced

C++ programmers [San95].

3 Frameworks and their Bene�t

What is a framework?

\A framework is a set of classes that embodies an abstract design for

solutions to a family of related problems." R.E. Johnson [Joh88]

\A framework de�nes a subsystem or mechanism that is customizable

or extensible. The subsystem design is encapsulated by a set of classes,

though the implementation may only be partially speci�ed. Framework

abstract base classes leave some member function de�nitions to the appli-

cation." [Cop91] p. 373

\The term application framework is used if this set of abstract and concrete

classes comprises a generic software system for an application domain."

[Pre95] p. 54

A framework is a set of prefabricated components of a working program which already

provides a minimum default behavior. Developers can use, extend, or customize

it for speci�c solutions. They only write the code that extends or specializes the

framework behavior to suit the application's requirements. A developer will build

an application by �rst identifying the framework and then �lling in some of the

customizable functionality. The main data and control 
ow infra-structure is already

prede�ned in the framework. In C++ frameworks, base class member functions take

care of the sequencing of application-dependent functions which are implemented as

private virtuals in the derived class.

But do frameworks have practical value? Application development is often not

directed towards an individual application, but a family of applications with common

base functionality. Application frameworks capture this genericity and provide for a

disciplined way of specialization. Figure 1 gives an example. The framework includes

a main event loop which calls the HandleUpdate function of TApplication which in turn

calls DrawSelf on every TWindow object. The application gets this behavior simply by

instantiating TApplication, and subclassing TWindow with its own DrawSelf method.

This is called framework adaption and elaborated in step 5 of the plan described in

section 5.1 below.

4



call DrawSelf

TMyWindow

TWindow

HandleUpdate

DrawSelf

DrawSelf

Application framework

MyApplication

TApplication
DrawSelf in

TMyWindow

overrides DrawSelf

in TWindow

Figure 1: A simple application framework

As a consequence, a large amount of design and code is reused, making the transition

to object-oriented technology more e�ective than could be achieved by a mere switch

to an object-oriented language.

Taligent's CommonPoint frameworks CommonPoint 1.0 includes about 100 frame-

works divided into two groups:

1. Application frameworks provide features for developing interactive applications.

2. System Services comprise a set of services, on which Application frameworks

are built.

Application frameworks contain at the highest level a set of \Desktop Frameworks",

with the Presentation Framework being one of them. Since the Presentation Frame-

work uni�es a number of document model and user interface mechanisms, it is likely

to be the generic application to be specialized by an application developer.

Aside from frameworks covering entire application families, there are frameworks for

particular problem areas, falling into the area of System Services. CommonPoint 1.0

examples of such frameworks are:

1. the Data Access framework which allows data on remote or local (SQL) databases

to be accessed, queried or modi�ed

5



2. the Noti�cation framework which provides a mechanism to propagate change

information from one object to another, or

3. the Caucus framework which provides for multicast communication facilities for

collaborative applications.

Our experience with a small fraction of these frameworks showed that they are de-

signed in a principled way, and implemented reliably. Taligent designers and engineers

deserve praise on this point since:

\Good frameworks are usually the result of many design iterations and a

lot of hard work." [WBJ90]

4 A Roadmap to Learning Taligent Frameworks

Figure 2 shows a recommended roadmap to learning Taligent frameworks. The dotted

arrows show optional material.

1. Prerequisites: A good mastery of C++, on the level of [Lip91] and [Cop91] is

desirable. Eventually, you will have to understand functors (objects that behave

like functions).

You should have read \Taligent's Guide to Designing Programs: Well-Mannered

Object-Oriented Design in C++" ([Tal94] available in bookstores). It teaches

the fundamentals of OOAD, and introduces C++ programming conventions ob-

served by Taligent. Previous OOAD background literature (such as [CAB
+
94])

helps in understanding this design guide
1
.

2. Before you start reading about Taligent's concept of frameworks in \Introduc-

tion to the CommonPoint Application System" (see [Tal95e]), or the recently

published \Inside Taligent Technology" (see [CP95]), it would be useful to have

some understanding of design patterns (see [GHJV94] or [Pre95]) since this

trains you to think in terms of \purposeful structures of objects", as you will

encounter them later in the exposition of application frameworks.

3. The CommonPoint printed documentation includes a self-guided tour manual:

\Programming with the Presentation Framework: Tutorial" [Tal95f]. In par-

ticular, familiarize yourself with the architecture diagram notation explained

there. It is easier to follow this tutorial if you had some previous exposition

to an application framework such as MacApp, ET++, or InterViews. If not,

1An annotated bibliography can be found on http://www.taligent.com/resources-list.html

6



Object-oriented development

Use Online Hypertext

Documentation

Implement an extension

to the "Tiles" tutorial

Programming with the

Presentation Framework

Introduction to the

CommonPoint

Application System

Taligent’s Guide to

Well-Mannered Object-Oriented Design

Study Online Recipes

Mastery of C++

Study MacApp

Design Patterns

Design first Application

Figure 2: Roadmap to Learning Taligent Framework Use

7



study the MacApp framework (e.g. from [WRS90]), since many graphical user

interface terms known from MacApp reoccur in the Presentation Framework.
2

Read the tutorial trying to recognize Taligent's programming idioms you have

learned in step 1 above (for examples see section 5.3 below). Taligent uses not

only naming conventions but also C++ idioms you may not have come across.

If you don't use these idioms, your code may work, but will be hard to follow

by others, and break down when unforeseen functionality has to be added.

Implement some extensions to the application, for example change the model

(e.g. add a size attribute to the tile object), or the extensions mentioned at the

end of the tutorial.

During this tutorial it is very important to become familiar with Taligent's class

diagram notation (in particular if you have not previously been exposed to it,

say from [GHJV94]. It is helpful to practice drawing such diagrams for idioms

encountered (if applicable) or the selected extensions.

The time needed for this is at least one month, and the experience of people

who tried to shortcut this period has been negative.

Avoid starting to study the \Documented Samples" ([Tal95c] before having

completed your �rst month of intensive training. (Reason: the samples are

written by experts for demonstration purpose, without pedagogic intent.)

4. Use the online documentation to study available recipes. Figure 3 shows an

example recipe. A recipe uses a concrete code snippet to show how an isolated

problem can be solved. The recipes are organized in a hypertext model as a

cookbook.

After a short familiarization with the cookbook (2 to 3 days) you may sporad-

ically return to particular recipes that your application development demands.

5. Learn to use the online \Class and Member Function" hypertext documenta-

tion. It will be your online dictionary for quickly determining the signature

of a method, the protocol of a mixin class etc.. You will not learn about the

functionality of any particular framework from the online \Class and Member

Function" documentation. Consult the Developer's Guides for that [Tal95e].

5 Lessons Learned and Pitfalls to Avoid

This section helps you design and implement your �rst application with CommonPoint

frameworks. In the following we emphasize the importance of architecture diagrams,

2A \cultural" heritage between Apple and Taligent is prevalent in many of the user interface

concepts.

8



method and passing it the drawing port of the view

TTextDisplay::SetOrigin determines where the first

letter of the string draws in the view

Create an instance of TTextDisplay from it

Create the string "Hello World" as TStandardText

the string is drawn by calling the TTextDisplay::Draw

TStandardText theText("Hello World");

Recipe to draw text in a view

send a notification

draw text in a view

parse a date

format a date

How do I?

TTextDisplay theDisplayedText(theText);

theDisplayedText.SetOrigin(TGPoint(30.0, 30.0));

theDisplayedText.Draw(thePort);

Figure 3: Hypertext cookbook of recipes

explain steps prior to the implementation of your application (after a requirement

analysis and some object-oriented analysis), and �nally mention some of the most

important idioms to be followed during implementation.

5.1 Use architecture diagrams: Class and Object diagrams

\We must spend more time in the future discovering, teaching, and writing

about the general principles of object-oriented design". Dan Halbert in

[O'S86]

Taligent frameworks expose design at a higher level of abstraction than the code.

They model good design principles, and thereby have a teaching e�ect. Various types

of diagrams are instrumental for exposing design: class diagrams, object diagrams

and interaction diagrams.

CommonPoint framework documentation uses only class diagrams
3
. These document

the static relations among classes. Interaction diagrams are used by CommonPoint

only to document the sample applications [Tal95c].

CommonPoint documentation lacks object diagrams which represent the dynamic re-

lations among objects
4
. Gamma introduced a 
avor of object diagram notation in his

3originally introduced by Wilson [Wil90] and also explained in [GHJV94].
4In Fusion [CAB+94] the term \object interaction graph" is used.

9



thesis [Gam90] and some variant of it may become part of a future TalDE (Taligent

Development Environment).
5

Since we found object diagram notation very useful, and it is not included in the

CommonPoint documentation, we brie
y explain it here (if you know some other

object diagram notation you can skip the rest of this section): an object diagram

represents a snapshot of a network of objects who have references to each other,

i.e. know each other. The owns relation can be indicated as a special case of the

knows relation. Since C++ program design involves making decision about memory

management, it is important to have an explicit account of the owns as well as knows

relation.

Figure 4 is an example object diagram (from [Gam90]).

EventHandling

Control

DoMenuCommand

DoKeyCommand

aDrawApp

palette

DrawApplication

Application
documents

DrawDocument

drawView

EventHandler

sending the message "Open"

aDrawDocument

nextEventHandler

EventHandling

Open

a protocoll

an instance
a collection of
instances

Figure 4: Example Object Diagram

Objects are depicted as rounded rectangles. The object name is separated from the

rest by a line. Methods and �elds are presented as in class diagrams, except that the

hierarchy may be 
attened, so that one sees the class a particular method is inherited

from. An unlabeled arrow indicates reference (solid if it also implies ownership). A

labeled arrow denotes message passing. A label preceded by a dot denotes a protocol.

The messages of a protocol are shown in a dashed box | also called a mixin class in

5Unfortunately, the current CommonPoint documentation does not use object diagrams. A pos-

sible reason for Taligent's hesitation is that exposing too much control structure of the framework

makes improvements more di�cult. The CommonPoint 1.0 development environment will include

Look, a tool for visualizing C++ applications. Look produces object diagram snapshots. I thank

Erich Gamma for pointing out the bene�t of the object interaction view for program understanding.

10



Taligent's terminology
6
.

Object diagram notation is useful for program understanding and documentation, be-

cause it makes object sharing explicit, and helps you visualize a state of computation.

5.2 Make an Implementation Plan

Adapting one or more frameworks is the essence of implementation. This section

describes steps for a process of framework adaption.

1. Initially, reduce the problem to a kernel and describe its functionality. Describe

the layout of views, GUI elements, possible user commands, and their e�ect on

the model and views.
7

Do not overspecify your design, since you may miss opportunistic use of frame-

work facilities. For example, if your design calls for the user selecting a single

element from a small set, you may decide which GUI element to use after having

explored examples in Taligent's \Sample Applications".

2. Understand at a functional level the TalAE frameworks, that might be relevant.

This means: understand the class diagrams of the frameworks relevant to your

design, and know what their customizable functionality is, i.e. you must be able

to point out their hot spots8.

3. Choose the relevant framework(s) and express the design in terms of selected

frameworks using CommonPoint's architecture diagram notation (see section 5.1

above). For example, if you chose the presentation framework the class TModel

is one of its hot spots, and an application-speci�c model needs to be de�ned

(see step 5 below).

4. Design for extensibility: Often there may actually be a set of framework classes

that must be selected. If there are classes with similar functionality it is ad-

visable to chose those with larger functionality, in case the kernel application

is to be expanded later. For example, if you chose a class supporting a view

6A mixin class is a class you can use to add more functionality to a class that derives from another

primary base class. Base classes represent fundamental objects (types) and mixin classes represent

optional functionality (protocol).
7A good way to do this is to use the patterns language for the Model-View-Controller framework

described in [GHJV94].
8For the technical meaning of this in terms of template and hook functions see Pree [Pre95]. The

basic idea is that framework adaption occurs at points of prede�ned re�nement, called hot spots.

A template function is a method which supplies the 
ow of control and receives parameters for

customization. (The term \template" has no relation to the C++ use of the word.) The template

method calls hook methods, which need to be de�ned by the framework user, and capture the

customization of the current application.

11



which can access the GUIBundle9 over a class that does not, this view will have

access to the model, presenter and selection, which may be important for some

methods to be de�ned on this view.

5. Adapting a framework: Figure 5 shows the two APIs of a framework that

an application program may interface to: the calling API and the subclassing

API.

call

Apply member function "B" to object of class "A"

Framework

Class "A" Class "Y"

virtual member function "Z"

Class "MyY"

member function "Z"
Subclass "MyY" from class "Y"

overriding member function "Z"

member function "B"

Program using "calling API"

Program using "subclassing API"

Figure 5: Calling API and Subclassing API

The calling API applies some method B (a template function in Pree's termi-

nology [Pre94]) of the framework to an instance of framework class A. B in turn

polymorphically calls Z on an instance of a subclass MyY of the framework class

Y. Z (a hook function in Pree's terminology) has been de�ned in the application

(possibly overriding default behavior of the framework).

A process for framework adaption follows: Start by selecting a class from the

framework. Now there are the following alternatives:

(a) if this class contains all the needed functionality, directly instantiate from

it (calling API),

9Think of a GUIBundle as an object via which the main participants of a Model-View-Controller

architecture communicate.

12



(b) derive from the framework class if the class does not provide all the func-

tionality needed or if the class requires to override some member (subclass-

ing API),

(c) mixin from a framework. Understand which mixin classes exist for a frame-

work (classes whose name starts with the letter 'M'). Objects collaborate

by communicating with each other via a shared protocol, and TalAE de-

�nes individual protocols via mixin classes. Mixin classes can come from

the same framework or di�erent frameworks.

Any framework adaption via the subclassing API requires the developer to

observe certain constraints:

� Pure virtual functions must always be implemented in the derived classes.

� virtual functions with a default behavior might not need to be implemented

in the derived classes.

� virtual functions without default behavior must be implemented in the

derived classes.

6. Decide object ownership. LaLonde and Pugh write ([LP95]):

\The three biggest problems for C++ programmers are forgetting to

delete an object (i.e. losing space), deleting an object too soon (i.e.

it is still needed), and attempting to delete an object more than once

(you can't delete what you no longer have)."

Augment the initial architecture diagram which abstracts from ownership with

the ownership relation. This is necessary in a language like C++ which does

not provide automatic garbage collection.

7. To clarify complicated cases draw \interaction diagrams" to capture 
ow of

control. For instance, if you use container objects, the sequence of initialization

is constrained by the fact that some initializations on the containee cannot be

performed until it is adopted by the container. Such dependencies can be made

explicit in interaction diagrams. For examples see [Tal95c].

5.3 Use Taligent Idioms

An idiom is a coding level pattern or programming cliche. If you understand Taligent

idioms you will be able to grasp larger chunks of meaning at a time, and if you use

idioms you and others will understand the code better. Taligent idioms also enable

the reusability of components, e.g. if you observe the type extension idiom (see 3

below), your components can be part of objects which are persistently stored.

13



1. Never derive a base class just to add protocol (member functions). De�ne a

mixin class instead. In CommonPoint data types are base classes and protocols

are mixin classes.

2. Follow the Law of Demeter ([LHR88]) which has the purpose to reduce the

amount of object coupling: In each method M of a class C only call methods of

the following classes:

(a) classes of C's members

(b) classes of the arguments of M

3. Use the TaligentTypeExtension facility to declare that instances of that class can

be saved as persistent objects. This gives these objects runtime type identi�ca-

tion (RTTI). To accomplish this, aside from calling the appropriate declaration

and de�nition macros, the following member functions need to be de�ned:

(a) default constructor

(b) copy constructor

(c) assignment operator

(d) stream in and out operators

Observing the rules for de�ning these methods gives the bene�ts of dynamic type

checking with e�ciency and safety of static type checking! Coding is simpli�ed

by using the application template for the model de�nition of the presentation

framework. They contain raw C++ source code which with a few �nd-and-

replace commands can be adapted to your class declaration and de�nition.

4. Observe Taligent terminology for making object ownership explicit. Use the

pre�xes Adopt, Orphan, Create and Get consistent with Taligent's semantics!

This helps avoid the three most common C++ errors mentioned above ([LP95]),

5. Use the iterator abstraction for collections:

<TDeleterFor<TIteratorOver<Type>> iterator

This declares the iterator and will delete it after it goes out of scope.

6 Conclusion

The time it takes to become a productive developer with Taligent frameworks is long

(at least three months until you can approach your �rst application). Following the

suggestions of this report will help you to assess the learning problem more realistically

and make your learning experience more e�ective and enjoyable.

14



Since Taligent frameworks are a principled way to design reusable object-oriented

components, you will not only be able to use such components, but also be well

prepared to extend frameworks or design new frameworks to be reused by others.

References

[CAB
+
94] D. Coleman, P. Arnold, S. Bodo�, C. Dollin, H. Gilchrist, F. Hayes, and

P. Jeremaes. Object-Oriented Development: the Fusion Method. Prentice

Hall, 1994.

[Cop91] J. Coplien. Advanced C++: Programming Styles and Idioms. Addison-

Wesley, 1991.

[CP95] Sean Cotter and Mike Potel. Inside Taligent Technology. Addison-Wesley,

1995.

[Gam90] E. Gamma. Objektorientierte Software-Entwicklung am Beispiel von

ET++: Klassenbibliothek, Werkzeuge, Design. Springer-Verlag, Berlin,

1990.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[Joh88] R. Johnson. Designing reusable classes. The Journal of Object-Oriented

Programming, 1(2):22{35, 1988.

[Lau95] Joachim Laubsch. Taligent application frameworks: a technology assess-

ment. Report, Hewlett-Packard Laboratories, June 1995.

[LHR88] K. Lieberherr, I. Holland, and A. Riel. Object-oriented programming:

An objective sense of style. ACM SIGPLAN Notices { OOPSLA'88,

23(11):323{334, 1988.

[Lip91] S.B. Lippman. C++ Primer. Addison-Wesley, 1991.

[LP95] Wilf LaLonde and John Pugh. Complexity in C++: A Smalltalk perspec-

tive. Journal of Object-Oriented Programming, pages 49{56, March-April

1995.

[O'S86] T. O'Shea. Panel: Learnability of object-oriented programming systems.

ACM SIGPLAN Notices (Proceedings of OOPSLA'86), 21(11):502{504,

1986.

15



[Pre94] Wolfgang Pree. Meta-patterns: A means for describing the essentials of

reusable o-o design. In Mario Tokoro and Remo Pareschi, editors, Pro-

ceedings of ECOOP'94, pages 150{162. Springer Verlag, 1994.

[Pre95] Wolfgang Pree. Design Patterns for Object-Oriented Software Develop-

ment. Addison-Wesley, 1995.

[San95] Rich Santalesa. Taligent readies a new development paradigm. IEEE

Software, 12(2):103{105, March 1995.

[Tal94] Taligent. Taligent's Guide to Designing Programs: Well-Mannered Object-

Oriented Design in C++. Addison-Wesley, 1994.

[Tal95a] Taligent Inc, Cupertino. Desktop Frameworks concepts, 1995.

[Tal95b] Taligent Inc, Cupertino. Distributed Computing, 1995.

[Tal95c] Taligent Inc, Cupertino. Documented Samples, 1995.

[Tal95d] Taligent Inc, Cupertino. Foundation Services, 1995.

[Tal95e] Taligent Inc, Cupertino. Introduction to the CommonPoint Application

System, 1995.

[Tal95f] Taligent Inc, Cupertino. Programming with the Presentation Framework:

Tutorial, 1995.

[Tal95g] Taligent Inc, Cupertino. Text, Native Language Support, and Time Media,

1995.

[WBJ90] R. J. Wirfs-Brock and R. Johnson. Surveying current research in object-

oriented design. Communications of the ACM, 33(9):104{124, 1990.

[Wil90] D. A. Wilson. Class diagrams: A tool for design, documentation and

testing. The Journal of Object-Oriented Programming, 3(1):38{44, 1990.

[WRS90] David A. Wilson, Larry Rosenstein, and Dan Shafer. C++ Programming

with MacApp. Addison Wesley, 1990.

16




