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Abstract

Let Xk be a sequence of iid random variables taking values in a
compact metric space 0, and consider the problem of estimating the
law of Xl in a Bayesian framework. A conjugate .family of priors
for non-parametric Bayesian inference are the Diricl\Iet process priors
popularized by Ferguson. We prove that if the prior distribution is
Dirichlet, then the sequence of posterior distributions satisfies a large
deviation principle, and give an explicit expression for the rate func­
tion.

1 Introduction

Let X be a Hausdorff topological space with Borel a-algebra B, and let JJn
be a sequence of probability measures on (X, B). A rate function is a non­
negative lower semicontinuous function on X. We say that the sequence J-tn
satisfies the large deviation principle (LDP) with rate function I, if for all
BEE,

- inf I(x) ~ lim inf ! log JLn (B) ~ lim sup! log JLn (B) ~ - in{ I(x).
xEBo n n n n xEB

Let 0 be a complete, separable metric space (Polish space) and denote by
M 1(0) the space of probability measures on n. Consider a sequence of
independent random variables X k taking values in f2, with common law
{l E M 1(0). Denote by L n the empirical measure corresponding to the first
n observations:

1 n
Ln = - L8xk ·

n k=l

We denote the law of Ln by £(Ln ). For 1/ E Ml (n) define its relative entropy
(relative to J..L) by

{

~ dll log dll dJ-t V« J.L
H(vlp.) = n dl' 00 dl' otherwise.
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The statement of Sanov"s theorem is that the sequence £(Ln ) satisfies the
LDP in M 1(0) equipped with the r-topology (see Dembo and Zeitouni [1,
Theorem 6.2.10]), with rate function H(·IJ-t). As a corollary, the LDP also
holds in the weak topology on Ml(n), which is weaker than the r-topology.

In an earlier paper [8], we proved an inverse of this result, which arises
naturally in a Bayesian setting, for finite sets!1. The underlying distribution
(of the Xk's) is unknown, and has a prior distribution 1r E Ml(M 1 (!1)).
The posterior distribution, given the first n observations, is a function of
the empirical measure L n and is denoted 1fn(Ln}. We showed that, on the
set {Ln --t J.L}, for any fixed p. in the support of the prior, the sequence
1fn(Ln) satisfies the LDP in M 1(O) with rate function given by H(J-tl·) on
the support of the prior (otherwise it is infinite). Note that the roles played
by the arguments of the relative entropy function are interchanged compared
to Sanov's theorem. We pointed out that the extension of the result to more
general n would require additional assumptions about the prior. To see
that this is a delicate issue, note that, since H(J.lIJ.L) = 0, the LDP implies
consistency of the posterior distribution: it was shown by Freedman [6] that
Bayes estimates can be inconsistent even on countable n and even when
the 'true' distribution is in the support of the prior; moreover, sufficient
conditions for consistency which exist in the literature are quite disparate
and in general far from being necessary. In this paper, we prove an LDP
for the special (but nevertheless, useful) case of Dirichlet process priors on a
compact metric space, 0, equ~ppedwith the weak topology. Our techniques
should easily generalize to a number of other popular choices of prior. If we
assume only that the sequence of empirical measures L n converges weakly
to J-t, then we can show that the LDP does not necessarily hold in·the 7­

topology on M 1(n). The problem of extending our results to an arbitrary
Polish space, !1, remains open.

The LDP for Dirichlet posteriors derived here has applications to queue and
risk management that are discussed in Ganesh et al. [7]. Some questions
of interest in this context are posed in terms of the ruin probability in the
classical gambler's ruin problem. The LDP for the posterior distributions
can be used to obtain an asymptotic formula for the predictive probability
of ruin, see [7, 8] for details.
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2 The LDP

Let n be a compact metric space with Borel a-algebra F. Let M 1 (n) denote
the space of probability measures on (n,F), and B(MI(n) the Borel a­
algebra induced by the weak topology on M 1 (n). In this case, it is not
possible to establish an LDP for Bayes posteriors corresponding to arbitrary
prior distributions, for reasons discussed above. Therefore, we shall work
with a specific family of priors, namely Dirichlet process priors, which are
introduced below. The discussion follows Ferguson [4].

Let n > 0 and a == (al, ... , an) be given. Suppose Zi, i == 1, ... , n are in­
dependent real-valued random variables, with Zi '" Q(ai, 1), where g(ai, 1)
denotes the gamma distribution with shape parameter ai and scale parame­
ter 1, and rv denotes equality in distribution (if ai == 0, we take Zi == 0). Let
Z == Zl +... + Zn. The n-dimensional Dirichlet distribution with parameter
a == (aI, .. ' ,an), denoted D(a), is defined to be the joint distribution of
(YI , ... , Yn ) = (Zl/Z, ... , Zn/Z). This is a probability distribution on the
n-simplex,

n

sn == {x E lRn
: Xi ~ O,i == 1, ... ,n, LXi == I},

i=l

and if all the ai are strictly positive, it can be expressed by the density

f( ) - f(Ei=l ai) nrr-1 ai-l( ~ o)an-1
Xl"",Xn -1 - n~- r(a')' xi 1- ~X1 •

1-1 1 1=1 1=1

(1)

Here r(·) denotes the gamma function: r(z) = Jooo xz-1e-xdx, z > O. Some
interesting and useful properties of the Dirichlet distribution are stated be­
low.

1. If (Y1, ... ,Yk) '" D(al, ... ,ak) and Tl, ... ,rl are integers such that
o< Tl < ... < rl = k, then

This follows directly from the definition of the Dirichlet distribution
and the additive property of the gamma distribution: if Zl '" 9 (0:1, 1)
and Z2 "'J g(O'2, 1), and Zl and Z2 are independent, then Zl + Z2 rv

9(a1 + 0'2, 1).
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2. If the prior distribution of (Y1 , ... ,Yk) is D(al, .. ' ,ak), and if

P(X = jIY1 , ... ,Yk ) = Yj, j = 1, ... ,k,

then the posterior distribution of (Y1 , ... , Yk ) given X = j is the
Dirichlet distribution D (a{ ,... ,at), where

if i t= j
if i = j.

Recall that if (Y1 , ... , Yk ) have a Dirichlet distribution, then each Yi is non­
negative and Ef=I Yi = 1. So the J:i can be interpreted as the parameters
of a multinomial distribution on {I, ... , k}. Hence., Property 2 above says
that the Dirichlet distribution is a conjugate prior for the parameters of a
multinomial distribution: if the prior is a Dirichlet distribution, then so is
the posterior.

Denote by M+ ([2) (respectively Ml (0)) the space of finite non-negative (re­
spectively probability) measures on an arbitrary measure space (n, :F). The
"Dirichlet process" with parameter a E M+(n), which we denote by V(a),
is a probability distribution on Ml (0), and is characterized as follows. A
random probability measure, IL, on n has law V(Q) if, and only if, for each
finite measurable partition (AI, ... ,An) of!1, the vector (,u(A1), • • • ,J.t(An))
has the n-dimensional Dirichlet distribution D(o(A1 ),." •• ,a(An )). The dis­
tribution of (,u(BI ), ... ,J-L(Bn)) for. arbitrary measurable B I , ... ,Bn follows
in an obvious way from the distributions for partitions (see [4] for details). A
natural consistency criterion suggested by the above definition is the follow­
ing: if (A~, ... ,A~) and (AI, ... ,Ak) are measurable partitions of n, and if
(A~, ... ,A~) is a refinement of (AI,' .. ' A k ) with Al = U~l A~, A 2 = U~~+IAi,

... , Ak = U~k_l+lA~, then

It is clear from Property 1 of the Dirichlet distribution stated above that
this consistency criterion is satisfied. It turns out that this condition is
sufficient for the validity of the Kolmogorov consistency conditions for the
finite-dimensional distributions defined above, and hence for the existence
of the Dirichlet process: see Ferguson [4] for a proof and a more detailed
discussion.
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(2)

Suppose P is a prior distribution on the space Ml (!1) and assume P is a
Dirichlet process with parameter a, denoted 'P(a). Then, conditional on
observing WI, .. . ,wn , it can be shown (see [4, 5]) that the posterior distri­
bution is also a Dirichlet process, but with parameter a + E~l C>Wi' where
§x denotes the Dirac measure "at x. In other words, the Dirichlet processes
V(a), a E M+(!1) are a conjugate family of priors. This property greatly
facilitates computation of posterior distributions and is very useful in ana­
lytical work. We now prove a large deviation principle for the sequence of
distributions, {V(a + Ei=l §Wi)' n = 1,2, ... }.

Theorem 1 Let a be a finite non-negative measure on (!1, B(O)), with sup­
port!1. Let J.L be a probability measure on (!1, B(!1)), and let {xn } be an
n-valued sequence such that

1 n- L ~Xi (A) -7 J.L(A) weakly,
n i=l

where JXi denotes Dirac measure at Xi. Then the sequence of probability
measures, V(a + 2:f=I §Xi) , satisfies an LDP in Ml(!l) equipped with its
weak topology, with rate function 1(.) given by

1(v) = H(p,lv),

where H(J.Llv) denotes the relative entropy of J.L with respect to v.

Corollary: If Xi, i E IN are iid with common law J.L, then the sequence of em­
pirical distributions, (lin) L:i=l JXi' converges weakly to J.L with probability"
one. Hence, the sequence of random probability measures V(a + L:i=l ~Xi)
almost surely satisfies an LDP (on M l (0) equipped with its weak topology)
with rate function 1(·) = H{J.LI·).

Remark: Note that there is no loss of generality in the assumption that
the support of the prior, a, is fl. Indeed, if the prior were supported on
some smaller set n1 , then since the posterior assigns no mass outside n, we
can confine ourselves to 0 1 . Since 111 is closed (by definition of the support
of a measure), it is compact and the requirements in the statement of the
theorem are met.

Let Jjn be a random element of M1(0) with distribution D(a+ Ei=l <5xi ) as
above. For bounded measurable functions f : n -7 lR, we define

An(f) = log E [exp kfdj.LnJ1
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We shall need the following lemmas, whose proofs are in the appendix.

Lemma 1 Let (AI, ... , A k ) be a measurable partition ofn and suppose that
the interior of Ai is non-empty for each i = 1, ... ,k. Let f be bounded and
measurable with respect to a(A I , .•. ,Ak ), the a-algebra generated by the sets
AI, ... , A k . Then,

AU) := lim .!.An(nf)
n--}-oo n

exists and is finite, and is given by

AU) = sup Cjdv - Hk(Jllv),
vEMl(f2) if,

where

(3)

(4)

(5)

If f is a(Al, ... ,Ak)-measurable and the partition (BI, ... ,Br ) is a re­
finement of (AI, ... , Ak ), then f is also a(B1 , .•• , B r )-measurable, so it
may appear at first glance that the right hand side of (4) is not well­
defined. We show in Lemma 4 that (4) can, in fact, be rewritten as A(f) =
J fdv - H(J.llv), so that there is no ambiguity in the definition of A(f) for
simple functions.

Lemma 2 For all bounded, continuous functions f : n --t JR., the limit in
(3) exists and is finite. The map A : Cb(f2) --t lR is convex and continuous.

Here, Cb(rl) denotes the space of bounded continuous functions from n to
IR, equipped with the supremum norm, IIfiloo = sUPxEn If(x)l.

Lemma 3 Let Ak = (At, ... , A~k)' k E:IN, be a sequence of partitions of n
such that the corresponding a-algebras, a(Ak), increase to B(n), the Borel
a-algebra on f2. Then, for all v E M1(n), we have

Lemma 4 For all f E Cb(n), we have

A(f) = sup Jfdv ~ H(J.llv) ..
vEMl(n)
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Proof of Theorem 1 : We have from Lemma 4 that A is the convex
conjugate of H(J.lI·). But H(p/·) is convex, and lower semicontinuous in
the weak topology (see Dupuis and Ellis [2, Lemma 1.4.3], and recall that
Ml (0) is a Polish space since 11 is Polish). Hence, H(t-t/·) and A(·) are
convex duals of each other. The large deviations upper bound for compact
subsets of Ml (0) now follows from [1, Theorem 4.5.3]. But 0 was assumed
to be compact, hence M 1(0) is compact in the weak topology, so the upper
bound holds for all closed sets in M 1(0). We now turn to the proof of the
large deviations lower bound.

The weak topology on M 1(0) is generated by the sets

Ul/J,x,6 = {v E Ml(n) :/ In 1>dv - x 1< Ii}, 1> E Cb(n),X E IR,1i > O.

Given such a set and € > 0, we can find a sequence of measurable partitions
A k = (At, ... ,A~k) of n, and a sequence of simple functions ¢k measurable
with respect to a(Ak ), with the following properties: the a-algebras a(Ak )

increase to B(O), the Borel a-algebra ori n; for all k and all i E {I, ... ,nk},
Af has non-empty interior; for some K > 0 and all k > K, II¢k - ¢lIoo < f.

We shall assume that € < 6/3. We now have

P(J.Ln E Ul/J,x,6) ~ P (I In 1>kdJ.Ln - x 1< Ii - 1:) V k > K. (6)

Let cPk = LGI cflA~· Then,,

It is shown in the proof of Lemma 1 (see equation (15)) that the sequence
(J.ln (At),· . · ,J.Ln(A~k ))n~O satisfies an LDP with rate function I k given by

{

~nk (A) I J.l(Aj ) ·f lDnk d ~nk 1I ( ) - LJj=l J.l j og --, 1 Y E.I1\.+ an LJi=l Yi = ,
k Yl,···, Ynk - Yj

+00, otherwise.

It follows from the Contraction Principle (see [1, Theorem 4.2.1]) that
L:~l Cflln{Af) satisfies an LDP with rate function Jk given by

Jk(X) = inf {h(Y) : f: C;Yi = x}
t=1

= inf {Hk(J.L1V) : v E Mdn),~ ¢~dv = x} .
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In particular, we obtain the large deviations lower bound,

l~~~f~ log p (I k(i>kd~n - x 1< <5 - f) (7)

> -inf{Jk (y):ly-xJ<8-€}

= -inf{Hk(~lv):VEMl(n),lk¢kdv-xl<<5-f}. (8)

Now, 114> - <Pklloo < f for all k > K, so we have for all v E M1(O) that,

It now follows from (6) and (8) that, for all k > K,

liminf .!.logP(~n E U",x5) 2': - inf {Hk(Jl1V) ':1 r ¢dv - x 1< ~ - 2f}.
n-+oo n "", , in

Hence, we have from Lemma 3 that

lim inf .!- log P(~n E U", x5) 2': - inf {H(JlI v) :I { ¢dv - x 1< 8 - 2€} .
n-too n 0/, , in

Since € > 0 was arbitrary, we can let € decrease to zero, to get

liminf.!-logP(~nE U", x 5) 2': - inf {H(J-L1v) =1 { ¢dv - x 1< &} ,
n-+oo n 0/, , in

I which is the desired large deviations lower bound for the set Ul/J,x,6, with rate
function H(J-LI·). We have thus established the large deviations lower bound
for a base of the weak topology on M 1 (f2), and hence for all open sets in
this topology. Combined with the upper bound above, this completes the
proof of the theorem.

We have established an LDP for the sequence of Bayesian posterior distri­
butions in the weak topology on Ml(fl), with rate function 1(1,1) = H(J.Llv).
The rate function differs from that in. Sanov's theorem in that its argument,
v, enters as the second rather than the first argument in the relative en­
tropy function. (Sanov's theorem says that the empirical distribution of a
sequence of iid f2-valued random variables with common law Jl satisfies an
LDP with rate function J(v) = H(vltJ.). Intuitively, this is because, in
Sanov's theorem we are asking how likely we are to observe v, given that
the true distribution is j.L, whereas in this paper we are asking how likely it
is that the true distribution is v, given that we observe tJ..
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3 Conclusion

In this paper, we establish a large deviations principle for the sequence of
Bayesian posteriors induced by a Dirichlet prior on a compact metric space,
f2. Can the result be extended to an arbitrary Polish space? Our approach
yields the large deviation lower bound for arbitrary open subsets of this
space, and the upper bound for compact subsets. In other words, we can
prove a weak LDP on a Polish space. This could be strengthened to a
full LDP if the sequence of Dirichlet posteriors were exponentially tight.
However, exponential tightness of this sequence would imply the goodness
of the rate function H(J.-LI·), which we know not to be true in general. For
example, take n == lR, J.l == b"o, the unit mass at 0, and V n == (1/2)b"o+{1/2)c5n .

Then H(J.Llvn ) == log 2 for all n, but the sequence V n is not tight. This
implies that H(J.LI·) doesn't have compact level sets, i.e., it is not a good
rate function. Hence, our method cannot be easily extended to arbitrary
Polish spaces. Finally, while we have worked with Dirichlet process priors,
the extension of our approach to other comIiIonly used classes of priors does
not appear to be difficult.
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A Proofs

Proof of Lemma 1: Let (AI, ... , Ak) be a partition of n such that the
interior of Ai is non-empty for every i == 1 ... , k. Let f be bounded and
measurable with respect to the a-algebra generated by the partition. Then
we can write

f == LCilAi '

i=1

(9)

for some constants Ci, where 1Ai denotes the indicator of Ai. Then, by (2),

k

An(J) = log E [exp LCiILn(Ad].
i=1

(10)

By the assumption that each Ai has non-empty interior and that the support
of a is n, we have

n

Qn(Aj ) :== a(Aj ) + L 15xi (A j ) > 0 V n E IN and j == 1, ... , k; (11)
i=1

It follows from the definition of the Dirichlet distribution that

(
ZI Zk )

(Jln(A I ), .. - ,l-ln(Ak )) rv k n i'···' k n i '
Ei=l Zn Ei=1 Zn

where the Z~ are independent gamma random variables, with

.. and an is defined in (11). Here, 9(0:,1) denotes the gamma distribution with
shape parameter a and scale parameter 1. It is straightforward to evaluate
the cumulant generating functions of the Z~. We have

. . {-o: (A·) log(1 - 0) if 0 < 1,
A~(B) :== logE[exp(OZ~)] =='. n J ,

- +00, otherwise.
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(14)

Since 2:%::1 6xi (Aj )/n ~ J.l(Aj ) by assumption, we get

'\(0);= lim .!.,\i (0) = { -p(Aj) log(l - (}), iff) < 1,
J n-too n n +00, otherwise.

Hence, by the Gartner-Ellis theorem (see [1]), the sequence of random 'vari­
ables Z~/n satisfies an LDP in ill. with rate function Aj which is the convex
dual of Aj, i.e.,

{
() () p(Aj ) ·f

Aj(x) = sup[OX-Aj(O)] = x - J.L A j + J.L A j log -x-, 1 X > 0, (12)
(JElR +00, else.

If J.L(Aj) = 0, then the assumption of steepness of Aj is not satisfied, so
the Gartner-Ellis theorem doesn't apply. However, it is not hard to verify
directly in this case that Z~/n does indeed satisfy an LDP with the above
rate function.

Since {Z~, j = 1, ... , k} are independent, {Z~/n, j = 1, ... , k} jointly sat­
isfy an LDP in lRk with rate function A*(X) = I:j=l Aj(Xj), where x ==
(Xl, ... ,Xk) and A; is given by (12).

Define YJ = Z~/ L~l Z~. Since Ef=l Z~ is strictly positive with probability
1, the maps

(Z~, ... ,Z~) -+ (Y;, ... , y:)

are almost surely continuous for every n. It follows from the Contraction
Principle (see [1, Theorem 4.2.1]) that {YJ,j = 1, ... ,k} jointl~ satisfy an
LDP with rate function I given by

I(Yl, ... ,Yk)=inf{t,\j(Zi):Yj= :j .,j=l, ... ,k}. (13)
j=1 Li=l Z1.

If Yj < 0 for some j, then any z included in the infimum in (13) must have
Zi < 0 for some i and so, by (12), I(y) = 00. Next, if Yj = 0 for all j or if
I:i=l Yi =1= 1, then there does not exist Z E lRk such that Yj == Zj/ Ef=l Zi

for all j. Hence I(y), being the infimum of an empty set, is again +00.

In the following, we shall confine attention to y E IRk such that Y ~ 0 and
2:f=l Yi = 1. If Z E ffik is such that Yj = Zj/ 2:f=l Zi for all j = 1, ... , k,
then we can write Z = {3y for some {3 > O. Now (13) gives

k

I(Yl, . .. ,Yk) == inf E Aj({3Yj).
{3>O j=l

11



(15)

Setting the derivative of the sum on the right with respect to f3 equal to
zero yields

o= t (Yj - J.t(Aj )) = 1 - ~.
j=l ~ ~

To obtain the last equality, we have used the fact that L:j=I Yj = 1 by

assumption, while l:j=l J.L(A j ) = 1 as J.L is a probability distribution and
AI,' .. ,Ak partition O. Since each Aj is convex, the above implies that the
infimum in (14) is achieved at 13 = 1, and

The second equality above comes from (12) and the third follows from the
fact that J.-L and yare both probability distributions, hence sum to 1. It
follows from the preceding discussion that the sequence of random vectors
(J1.n(A 1 ),o. 0 ,J1.~(Ak)) satisfy a~ LDP in lRk with rate function

{

~k (A ) I J-l(A j ) of k d ",kI(y) = LJj=l J.t j og -y;-' 1 Y E IR+ an LJi=l Yi = 1,

+00, . otherwise.

Observe from (9) that IJ fdJ-lnl ~ maxf=l leil as J1.n is a probability distri­
butiono Hence, we have from Varadhan's lemma [1, Theorem 4.3.1] and the
LDP for (j.tn(A1 ), .• 0 ,j.tn(Ak)) that

1 k
A(f):= lim -An(nf) = sup E CiYi - l(y).

n-+oo n YEIRk i=l

Using (15), we can rewrite the above as

k k J.L{Ai)
AU) = vE~~n) ~ C;V(Ai) - ~ J.t(Ai) log V(Ai)

sup f
n

fdv - Hk(p,lv),
lIEMl(ll) if

where

( I) ~ () J.L(A i ) ,
Hk J.L v = L...Jp Ai log (Ao)'

i=l v ~

12



This completes the proof of the lemma.

Proof of Lemma 2: Let € > 0 be given, and let f : n --7 IR be bounded
and continuous. We can find k > 0 and a simple function 9 == I:f=l c;lAi

such that II! - glloo < E. Since f is continuous, we can in fact choose the
"Ai to have non-empty interiors. Now, by (2) and the fact that each Ji,n is a
probability distribution,

An(nJ) = logE [exp LnfdJln] :::; logE [exp(L ngdJln + ne)]

== n€ + An (ng),

so that, by (3),

lim sup .!..An(nJ) :::; A(g) + f.
n~oo n

Likewise, lim infn~ooAn (nf) In 2: A(g) - E. Since E > 0 is arbitrary, it
follows that

AU):= lim .!..An(nJ)
n-+oo n

exists and is finite for all bounded, continuous f : n -7 JR. The arguments
above also show that A : Cb(n) -7 lR is continuous, with IA(f) - A(g)1 ~

II! - glloo· The convexity of A follows from Holder's inequality since, for
each n E IN, and for all 1,9 E Cb(n) and a E [0,1], we have

An(n[af + (1 - a)g]) = log E [(expLnfdJlnr (expLngdJlnr-a
]

:::; log {E[expLnfdlJnrE[expLngdlJn]I-a}
== aAn(nf) + (1 - a)An(ng).

Proof of Lemma 3: Suppose first that J..L is absolutely continuous with
respect to v, and denote by dJ.t/dv the Radon-Nikodym derivative of J..L with
respect to v. We now have, for all k E IN, that

The inequality above follows from the positivity of the measures J..L and v,
the convexity of x log x on [0,(0), and Jensen's inequality. Since the above
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holds for all partitions A k of n, we get

(17)

Let {A k , k E IN}, be a sequence of partitions of n such that a(Ak ) t B(f2).
Here, a(Ak

) denotes the a-algebra generated by (Af, . .. ,A~Ic) and B(n) is
the Borel a-algebra on n. Define the sequence of functions gk : n ~ lR by

Jl(A~)
9k(X) = v(Af)' x E Af, i = 1, ... ,nk·

Then, by Theorem 3.4, Chapter 4 of Durrett [3),

dJ-L
9k --+ dv v - a.s. as k ~ 00,

and so, bycontinuityofx --+ xlogxforx ~ 0,9klog9k --+ (dJ.l/dv) log (dJ-l/dv) ,
v almost surely. Hence, it follows from Fatou's lemma that

H(J-Llv) == (ddlL log dd/-L dv :S Hminf r9k.}oggkdvin v v k.-+oo in
nk (A~)

liminfLJ.L(A~)log4= liminf Hk(/-Llv). (18)
k-+oo i=l v(Ai ) k-+oo

We get from (17) and (18) that

H(J-llv) == lim Hk(J-llv) == sup Hk(J.Llv). (19)
k-+oo k

Suppose next that J.l is not absolutely continuous with respect to ·v. Then
H(JLlv) == 00, so (17) holds trivially. Moreover, there exists a Borel mea­
surable set B such that J-l{B) > °and v(B) = O. Since a(Ak) t B(O), we
can write B == nkElN B k , where Bk E a(Ak ), the a-algebra generated by the
partition Ak • Re-ordering the sets in Ak if necessary, we can write

mk

B k == UAf, k E IN.
i=l

We have from Jensen's inequality and the convexity of x log x on [0,00), that

14



Henceforth, we shall assume without loss of generality that the partitions
A k have been chosen such that Ak +1 is a refinement of A k for every k; then
the sets B k can be chosen such that B k+1 ~ B k for all k. Then B k +B, so
V(Bk) .J.. v(B) == 0, whereas J.L(Bk) ~ J.L(B) > 0 for all k E JR. It follows from
the above that

lim 5: JL(Af) log JL((At)) ~ lim p(Bk ) log P((BBk)) = 00.
k-+oo . 1 V A·· k-4OO 11 k

~= ~

But

The first sum above goes to infinity as k --7 00, whereas it is easy to verify,
using the inequality log x 2: 1 - (1/x) for x 2: 0 and the fact that v is
a probability distribution, that the second s~m is bounded below by -1.
Therefore,

i.e, (19) holds even for J-L not absolutely continuous with respect .to v. This
completes the proof of the lemma.

Proof of Lemma 4: We begin by establishing the claim of th~ lemma for
simple functions of the form (9), where the Ai have non-empty interiors and
partition Q. Let 11 E M1(n) be such that Jl «11. Define oX E M 1 (f2) by
setting .A =v on Ai if J.t(Ai ) = 0; if J.t(Ai ) > 0, define A to be absolutely
continuous with respect to J.l on Ai, with Radon-Nikodym derivative

dA lI(Ai )

dp == JL(Ad > O.

Then J.t is absolutely continuous with respect ~o .A and we have'

Also,

(21)
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Since v E Ml(n) was arbitrary, we obtain from (20) and (21) that

The reverse inequality holds as well because Hk(J.Llv) ::; H(J.Llv) for all
v E M 1 (S1) by Lemma 3. Hence, equality holds above and, by (4), this
establishes the claim of the lemma for simple functions of the form we con-
sider. .

For f E Loo(O), define

H*(f) = sup (jdv - H(J-Llv),
VEM1(n) in

(22)

i.e., H* is the convex conjugate of H(J.l/·). Now IJ jdvl ::; 1111100 .for all
v E Ml(O), while H(IlI·) is non-negative, with H(J.LIJ.t) = O. It follows
that H*(f) is finite for all f E Loo(O); in fact, IH*(f)1 S; 11/1100. Thus,
H* is a convex function with domain Loo(n), which is bounded on the open
neighbourhood, {/ : IIflloo < I}. Hence, by [9, Theorem 8], H* is continuous
on the i,nterior of its domain, which is all of LOO(O).

We have established the lemma for simple functions of the' form in (9).
Hence, H* and A. agree on· functions of the form / = Ef=l Ci1Ai' where the
Ai partition S1 and each Ai has non-empty interior. Since such functions are
dense in Cb(f2), A is continuous on Cb(f2) by Lemma 2 and H* was shown
to be continuous on LOO(S1) 2 Cb(O), it follows that A = H* on all of Cb(n).
The claim of the lemma is now immediate from the definition of H*.
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