13

Functions as
Passive Constraints in LIFE

dliloli[tlall

PARIS RESEARCH LABORATORY

June 1991 Hassan Ait-Kaci
(Revised, November 1992) Andreas Podelski

13

Functions as
Passive Constraints in LIFE

Hassan Ait-Kaci
Andreas Podelski

June 1991 (Revised, November 1992)

Publication Notes

The part of this report corresponding to Section 2 is to appear iRbeeedings of the Third
International Workshop on Extensions of Logic Programmaétited by Evelina Lamma and
Paola Mello, as Spinger-Verlag Lecture Notes in Computer Science, 1992.

(© Digital Equipment Corporation 1991, 1992

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for non-profit educational and research
purposes provided that all such whole or partial copies include the following: a notice that such copying
is by permission of the Paris Research Laboratory of Digital Equipment Centre Technique Europe, in
Rueil-Malmaison, France; an acknowledgement of the authors and individual contributors to the work;
and all applicable portions of the copyright notice. Copying, reproducing, or republishing for any other
purpose shall require a license with payment of fee to the Paris Research Laboratory. All rights reserved.

Abstract

LIFE is an experimental programming language proposing to integrate logic programming,
functional programming, and object-oriented programming. It replaces first-order terms
with i-terms, data structures which allow computing with partial information. These are
approximation structures denoting sets of values. LIFE further enriches the expressiveness of
-terms with functional dependency constraints. We must explain the meaning and use of
functions in LIFE declaratively as solving partial information constraints. These constraints
do not attempt to generate their solutions but behave as demons filtering out anything else.
In this manner, LIFE functions act as declarative coroutines. We need to show théat the
term’s approximation semantics is congruent with an operational semantics viewing functional
reduction as an effective enforcing of passive constraints.

In this article, we develop a general formal framework for entailment and disentailment of
constraints based on a technique called relative simplification, we study its operational and
semantical properties, and we use it to account for functional applicationystems in

LIFE.

Résumé

LIFE est un langage de programmation esipiental proposant d’iegjrer la programmation
logique, la programmation fonctionnelle et la programmation ogiemtjet. Il remplace les
termes du premier ordre par d¢stermes, des structures de dees’qui permettent le calcul
avec information partielle. Ceux-ci sont des structures d’approximation epotdht des
ensembles de valeurs. LIFE enrichit encore I'expressid@sy-termes avec des contraintes
de dpendance fonctionnelle. Nous devons expliqueclatativement la signification et
l'utilisation des fonctions en LIFE comme unesolution de contraintes avec information
partielle. Une telle contrainte ne tente pasrdifrérer ses solutions mais se comporte comme
un ddmon excluant toute valuation qui n’en soit pas. De cette enanies fonctions de
LIFE jouent le ole de coroutines etlaratives. Il nous faut montrer que lansantique
d’'approximation dwyp-terme est congrue avec unensantique ogrationnelle concevant la
réduction des fonctions comme une application effective de contraintes passives.

Dans cet article, nous @sentons un sema gneéral pour tester la copgiuence et laafutation

de contraintes bassur une technique appel simplification relative, eettdions les propeiés
opérationnelles eteshantiques, et I'utilisons pour expliquer I'application fonctionnelle sur les
1-termes dans LIFE.

Keywords

Constraint systems, first-order terms;terms, unification, matching, constraint entailment,
constraint disentailment, relative simplification, logic programming, functional programming,
committed-choice languages, residuation, coroutining.

Acknowledgements

We are grateful to Michael Maher for detailed comments on the form and contents of the
material of Section 5, and to Gert Smolka for stimulating discussions and his continuing
collaboration on issues related to the topic of this report.

We also wish to thank the members of the Paradise Project at PRL for many discussions that
led to a better formulation than what we originally had. In particular, we are indebted to Peter
Van Roy for his careful proofreading and commenting on the relative simplification rules,
Roberto Di Cosmo for his perspicacious questions on our general residuation framework, and
Seth Copen Goldstein for using our operational semantics as the basis of his compiler design
for LIFE.

Not least, and as usual, we gratefully acknowledge the help of Jean-Christophe Patat, PRL's
librarian, for his thorough proofreading and critical remarks. We thank him most of all, in this
particular instance, for his patience waiting for the final delivery of this report’s revision.

For the same reason, we also apologetically thank the many who have been waiting, more or
less patiently, for this revision to come out finally, after ordering the advertized report only to
receive a “Sorry, not available” note. The truth is that we had to fight a curse that was cast
upon this report as its number should have ominously forewarned us. We only hope that the
contents of this will have been worth their waiting so long.

Contents

1

Introduction

1.1 Thetask
1.2 Themethod
1.3 Organization ofpaper
Synopsis

2.1 LIFEdatastructures
2.2 Relative simplification
Background

3.1 OSF-algebras and OSF-constraints
3.2 Y-Terms,
3.3 Syntactic interpretations
3.4 OSF-unification
3.5 OSF-orderings and semantic transparency .
Entailment and disentailment of OSF-constraints

4.1 Termination of relative simplification
4.2 Correctness and completeness
4.3 Independence

A general residuation framework

5.1 Guarded Horn-clauses and guarded rules . .
5.2 Incremental relative-simplification systems .
5.3 Operational semantics of residuation

Functional application over -terms

6.1 Functional application in the ¢-term calculus
6.2 Endomorphisms and functional application .
6.3 Semantics of functional application

Conclusion

References

18
18
19
21
22
24

26
29
30
33

35
37
43
45

47
48
49
52

54

56

Functions as Passive Constraints in LIFE 1

The paradox of culture is that languag€ [is too linear,

not comprehensive enough, too slow, too limited, too
constrained, too unnatural, too much a product of its own
evolution, and too artificial. This means that [man] must
constantly keep in mind the limitations language places
upon him.

Epwarp T. Haw, Beyond Culture.

1 Introduction

1.1 The task

LIFE extends the computational paradigm of Logic Programming in two essential ways:

¢ using a data structure richer than that provided by first-order constructor terms; and,
¢ allowing interpretable functional expressiondasa fideerms.

The first extension is based @nterms which are attributed partially-ordered sorts denoting
sets of objects [1, 3]. In particula#;-terms generalize first-order constructor terms in their
role as data structures in that they are endowed with a unification operation denoting type
intersection. This gives an elegant means to incorporate a calculus of multiple inheritance
into symbolic programming. Importantly, the denotation-as-value of constructor terms is
replaced by the denotation-as-approximationpeferms. As a result, the notion of fully
defined element, or ground term, is no longer available. Hence, such familiar tools as variable
substitutions, instantiation, unificatiogtc, must be reformulated in the new setting [5].

The second extension deals with building into the unification operation a means to reduce
functional expressions using definitions of interpretable symbols over data pattedns.

basic idea is that unification is no longer seen as an atomic operation by the resolution rule.
Indeed, since unification amounts to normalizing a conjunction of equations, and since this
normalization process commutes with resolution, these equations may be left in a normal form
that is not a fully solved form. In particular, if an equation involves a functional expression
whose arguments are not sufficiently instantiated to matclefmiensof the function in
qguestion, it is simply left untouched. Resolution may proceed until the argumerpggasn

to match a definition from thaccumulated constraints in the context [4]. This simple idea
turns out invaluable in practice. Here are a few benefits.

¢ Such non-declarative heresies asiffygredicate in Prolog and tHeeezemeta-predicate
in some of its extensions [21, 12] are not needed.

¢ Functional computations are determinate and do not incur the overhead of the search
strategy needed by logic programming.

1Several patterns specifying a same function may possibly have overlapping denotations. Therefore, the order
of the specified patterns defines an implicit priority, as is usual in functional programming using first-order patterns

(e.g, [16)).

Research Report No. 13 June 1991 (Revised, November 1992)

2 Hassan Ait-Kaci and Andreas Podelski

¢ Higher-order functions are easy to return or pass as arguments since functional variables
can be bound to partially applied functions.

¢ Functions can be called before the arguments are known, freeing the programmer from
having to know what the data dependencies are.

¢ It provides a powerful search-space pruning facility by changing “generate-and-test”
search into demon-controlled “test-and-generate” search.

¢ Communication with the external world is made simple and clean [9].

e More generally, it allows concurrent computation. Synchronization is obtained by
checking entailment [20, 23].

There are two orthogonal dimensions to elucidate regarding the use of functions in LIFE:

¢ characterizing functions as approximation-driven coroutines; and,
e constructing a higher-order model of LIFE approximation structures.

This present article is concerned only with the first item, and therefore considers the case of
first-order rules defining partial functions owesterms.

1.2 The method

The most direct way to explain the issue is with an example. In LIFE, one can define functions
as usual; say:

fact(0) — 1
fact(N : int) — N xfact(N — 1).

More interesting is the possibility to compute with partial information. For example:

minugnegin) — posint
minugposiny — negint
minugzero) — zera

Let us assume that the symbats, posint negint andzerohave been defined as sorts with
the approximation ordering such thabsint zerg negintare pairwise incompatible subsorts
of the sortint (i.e., posintA zero= L, negintA zero= 1, posintA negint= 1). This is
declared in LIFE aint := {posint zerg negin§. Furthermore, we assume the sort definition
posint:= {posoddposeved; i.e., posoddand poseverare subsorts gbosintand mutually
incompatible.

The LIFE queryY = minugX : poseveij? will returnY = negint The sortposeverof the
actual parameter is incompatible with the seegintof the formal parameter of the first rule
defining the functiominus Therefore, that rule is skipped. The spoiseveris more specific
than the sorposintof the formal parameter of the second rule. Hence, that rule is applicable
and yields the resulf = negint

June 1991 (Revised, November 1992) Digital PRL

Functions as Passive Constraints in LIFE 3

The LIFE queryY = minug X : string) will fail. Indeed, the sorstringis incompatible with
the sort of the formal parameter of every rule defininigus

Thus, in order to determine which of the rules, if any, defining the function in a given functional
expression will be applied, two tests are necessary:

¢ verify whether the actual parameter is more specific than or equal to the formal parameter;
¢ verify whether the actual parameter is at all compatible with the formal parameter.

What happens if both of these tests fail? For example, consider the query consisting of the
conjunction:

Y = minug X : int), X = minugzerg)?

Like Prolog, LIFE follows a left-to-right resolution strategy and examines the equation
Y = minugX : int) first. However, both foregoing tests fail and deciding which rule to use
among those defininminusis inconclusive. Indeed, the sadrt of the actual parameter in

that call is neither more specific than, nor incompatible with, thersegintof the first rule’s
formal parameter. Therefore, the function call wisiduateon the variableX. This means

that the functional evaluation is suspended pending more informatidh dme second goal

in the query is treated next. There, it is found that the actual parameter is incompatible with
the first two rules and is the same as the last rule’s. This allows reduction anddiodsra

At this point,X has been instantiated and therefore the residual equation pendihgasnbe
reexamined. Again, as before, a redex is found for the last rule and Yetdzera

The two tests above can in fact be worded in a more general setting. Viewing data structures
as constraints, “more specific” is simply a particular case of constraint entailment. We
will say that a constraintlisentailsanother whenever their conjunction is unsatisfiable; or,
equivalently, whenever it entails its negation. In particular, first-order matching is deciding
entailment between constraints consisting of equations over first-order terms. Similarly,
deciding unifiability of first-order terms amounts to deciding “compatibility” in the sense used
informally above.

The suspension/resumption mechanism illustrated in our example is repzaiedime a
residuated actual parameter becomes more instantiated from the caatetktrough solving

other parts of the query. Therefore, it is most beneficial for a practical algorithm testing
entailment and disentailment to be incremental. This means that, upon resumption, the test for
the instantiated actual parameter builds upon partial results obtained by the previous test. One
outcome of the results presented in this paper is that it is possible to build such a test; namely, an
algorithm deciding simultaneously two problems in an incremental manner—entailment and
disentailment. The technique that we have devised to do that is cal&d/e simplification

of constraints.

Thistechnique is relevantin the general framework of concurrent constraint logic programming,
represented by.g, the guarded Horn-clause scheme of Maher [20], Concurrent Constraint
Programming (CCP) [23], and Kernel Andorra Prolog (KAP) [15]. These schemes are

Research Report No. 13 June 1991 (Revised, November 1992)

4 Hassan Ait-Kaci and Andreas Podelski

parameterized with respect to an abstract class of constraint systems. An incremental
test for entailment and disentailment between constraints is needed for advanced control
mechanisms such as delaying, coroutining, synchronization, committed choice, and deep
constraint propagation. LIFE is formally an instance of this scheme, namely a CLP language
using a constraint system based on order-sorted feature (OSF) structures [6]. It employs
a related, but limited, suspension strategy to enforce deterministic functional application.

Roughly, these systems are concurrent thanks to a new effective discipline for procedure
parameter-passing that we could describe as “call-by-constraint-entailment” (as opposed to
Prolog’s call-by-unification).

1.3 Organization of paper

We have organized the rest of this paper as follows. In Section 2, we cover informally the
essence of LIFE that is relevant to functions and explain the gist of our approach. Reading
only that section will provide a detailed intuition of the formal contents of the paper. It may be
skipped altogether by the formally-minded reader who can travel through the technical details
to follow without a road map. On the other hand, time spent there might reward the patient
reader with a better sense of direction and hence a faster pace through later technicalities.

The remainder of the paper is technical. In Section 3, we recall the necessary formalism
introduced in [6, 5] accounting for LIFE’s structures and operations. It is meant to make
this document self-contained. The reader already familiar with those notions could skip that
section, although reading it will provide a timely summary.

The last four sections contain the formal details and rigorous justifications of the material
presented informally in Section 2 and its relation to the semanties-t@fms and LIFE’s
operational semantics. First, in Section 4, we introduce the concept of relative simplification as
a general proof-theoretic method for proving guards in concurrent constraint logic languages
using guarded rules. Then, in Section 5, we explain residuation using relative simplification.
Section 6 ties the operational semantics of function reduction with the semanfig¢gohs as
approximation structures. Finally, we conclude with Section 7, giving a brief recapitulation of
the contribution of this paper and a few perspectives.

2 Synopsis

This section is an informal, albeit precise and detailed, overview of the main ideas. Using
schematic examples, we explain the operational mechanism underlying functional reduction
over order-sorted feature terms in the context of a logic programming framework. We recall

the basic terminology and notation of LIFE, unification and matching, and we sketch the

essence of relative simplification. Formal material rewording everything in rigorous terms

will be exposed in the following sections.

June 1991 (Revised, November 1992) Digital PRL

Functions as Passive Constraints in LIFE 5

2.1 LIFE data structures

The data objects of LIFE arg-terms. They are structures built out of sorts and features.
1-Terms are partially ordered as data descriptions to reflect more specific information content.
A i-termis said tanatchanother one if it is a more specific description. For first-order terms,

a matching substitution is a variable binding which makes the more general term equal to the
more specific one. This notion is not appropriate here. Unification is introduced as taking the
greatest lower bound (GLB) with respect to this ordering.

Sorts and features

Sorts are symbols. They are meant to denote sets of values. Here are a few exparptas:
int, true, 3.5, 1, T. Note that a value is assimilated to a singleton sort. We&#ile set of all
sorts. They come with a partial orderirg meant to reflect set inclusiénFor example,

e | <john< man< person< T;
o L <true<bool<T;
o | <2< poseverxint< T.

The sortsT (top) and L (bottom) are respectively the greatest and the least s@¥tand
denote respectively the whole domain of interpretation and the empty set.

Sorts also come with a GLB operation For example,

e personA male= man
¢ maleA female= hermaphrodite
e manA woman= _L;

etc, which can be visualized as shown in Figure 1. We will refer back to this figure in several
examples to come.

Features (or attribute labels) are also symbols and used toptddns by attaching attributes

to sorts. The set of feature symbols is calléd We will use words and natural numbers as
features. The latter are handy to specify attributes by positions as subterms in first-order terms.
Examples of feature symbols aage spousel, 2.

ip-Terms

Basicy-terms are the simplest form gfterms. They are:

e variablese.g, X,Y,Z, ...
e sorts;e.g, personint, true, 3.5, T, ...
e tagged sortx.g, X : T, Y: person ...

Stand-alone variables are always implicitly sorted byand stand-alone sorts are always
implicitly tagged by some variable occurring nowhere else. Thus, one might say that a basic

2Sorts and their relative ordering are specified by the user.

Research Report No. 13 June 1991 (Revised, November 1992)

6 Hassan Ait-Kaci and Andreas Podelski

T

male person female

man hermaphrodite woman
1

Figure 1. A partial order of sorts

1-term is always of the formariable: sort

Features are used to build up more completerms. Thus, the following-term is obtained
from they-termpersonby attaching the featuragetyped by thep-termint:®

X: persorfage=- | : int).

The sort at the root of @-term, hereperson is called itsprincipal sort A 1-term can be seen

as a record structure. Features correspond to field identifiers, and fields are, in turn, associated
to ¢-terms. These are flexible records in the sense that variably many fields may be attached
to the principal sort. For example, we can augmentfhierm above with another feature:

X': persorfage=- | : int,
spouse= Y : persorfage=- J : int)).

This ¢-term denotes the set of all objec{sof sort person(in the intended domain), whose
valuel under the functiomgeis of sortint, whose valuer under the functiospouses of sort
person and the valud of Y under the functiomgeis of sortint.

The followingi-term is more specific, in the sense that the above set becomes smaller if one
further requires that the valuésindJ coincide; namelyagg X) = aggspouséx)):

X': persorfage=- | : int,
spouse=- Y : persorfage=- 1)).

3To illustrate they-term ordering, we will give a decreasing matching sequengegims going from more
general to more specific ones.

June 1991 (Revised, November 1992) Digital PRL

Functions as Passive Constraints in LIFE 7

It denotes the subset of individuals in the previous sgievfors whose age is the same as
their spouse’s. Thig-term uses a coreference thanks to sharing the variablEhe next
1-term is even more specific, since it contains an additional (circular) coreference; namely,
X = spouséspouséX)):

X: persorfage=- 1 : int,
spouse= Y : persorfage=- |,
spouse= X)).

It denotes the set of all individuals in the previous set whose spouse’s spouse is the individual
in question. Note that only variables that are used as coreference tags need to be put explicitly;
i.e., those that occur at least twice.

To be well-formed, the syntax of @é-term requires three conditions to be satisfied: (1) the

sort 1 may not occur; (2) at most one occurrence of each variable has a sort; (3) all the
features attached to a sort are pairwise different. These conditions are necessary to ensure
that ai-term expresses coherent information. For examyleman(friend = X : womar),

violating Condition (2), is not &-term, butX : mar(friend = X) is.

As for ordering, ay-term is made more specific through:

e sortrefinemente.g, X:int< U : T;
e adding features typed by-terms;e.g, X: T(age= int) < U : T;
e adding coreferences.g, X : T(likes= X) < U : T(likes= V).

Note that, as record structuresterms are both record types and record instances. In addition,
they allowmixingtype and value information. Finally, they also permit constraining records
with equations on their parts.

-Terms as graphs

There is a straightforward representation gi-term as a rooted directed graph. Let us assume
that every variable is explicitly sorted (iewessary, by the sort) and every sort is explicitly
tagged (if necessary, by a single-occurrence variable). The nodes of the graph are the variables,
their labels are the corresponding sorts; for every feature mapping one vatisbenother

oneY there is an ar¢X, Y) labeled by that feature. One node is marked as the root (whose
label is called the root sort or the principal sort of theerm).

For example, the-term:
X1 : persorfname=- X, : id(first = X3 : string,
last=- X4 : string),
spouse= Xs : persorffname= Xg : id(last= Xa),
spouse= Xi)).

corresponds to the OSF-graph shown in Figure 2.

Research Report No. 13 June 1991 (Revised, November 1992)

8 Hassan Ait-Kaci and Andreas Podelski

name
——— Xj : person Xo :id
first last
spouse
X3 : string Xg : string
spouse
last
name
Xs : person X @ id

Figure 2. An OSF-Graph

¥-Terms as values

One particular interpretation is readily available #terms. Namely, the syntactic interpre-
tation whose domain is the set of altterms. Note that)-terms have a dual personality.

They are syntactic objects (graphs) representing the values of the domaanathey also

are types which denote sets. In the particular case of the interpretation , they denote subsets of
the domain of j.e., sets ofiy-terms. We shall see this dual view does not lead to paraalox,
contraire

In the interpretation , a soste S denotes the set of afl-terms whose root sort is a subsort of
s. Afeaturef € F denotes the function mapping/aterm to its subg-term under that feature,
ortoT, if there is none.

Thus, a sort denotes the set of d@lterm values which, ag-term types, are more specific
than the basig-terms. In fact, it is possible to show that in generajéerm denotes the set
of all ¢)-terms which are more specific than tiderm itself. This is the ¢-terms as filters”
principle established in [5]. It yields directly the fact that the partial ordediran ¢-terms is
exactly set-inclusion of the sets denoted by#hterms in thep-term domain.

Feature trees as values

We obtain two other examples of OSF-algebras when we “compresg-tkam domain by
identifying values. In a first step, we say that tweterms which are equal up to variable
renaming represent the same value of the domain, or: two isomorphic graphs are identified.
We call the OSF-algebra hereby obtaiged

It is well known that a rooted directed graph represents a unique rational tree obtained by

June 1991 (Revised, November 1992) Digital PRL

Functions as Passive Constraints in LIFE 9

unfolding. Hence, unfolding an OSF-graph yields what we call a feature tree. Such a tree is
one whose nodes are labeled with sorts and whose edges are labeled with features. Therefore,
we can also identifyy-terms which represent the same rational tree. The domain hereby
obtained is essentially the feature tree structliiatroduced first in [7] and [8].

Unification of «-terms

We say thaip is unifiable withy; if 1 A 92 # L; i.e,, if there exist)-terms with non-empty
denotations which are more specific than bgthand,. Then, one can show that there
exists a unique (up to variable renamingterms which is the most general of all these, the
‘greatest lower bound’ (GLB) ofy1 and,, written = 11 A 1.

For the set denotation @f-terms,A is exactly set intersection. An important result illustrating
the significance of the-term interpretation is thap; is unifiable withi, if and only if the
intersection of the two sets denoteddyandq, in the-term domain is non-empty.

Constraints and) -terms

We also view ap-term logically as a constraint formula by flattening it into what we call its
dissolved form For ease of notation, we shall wrifX :) to indicate that the root variable
of they-termqp is X.

More precisely, thaj-term X : s(£1 = (X1 : ¥1),...,€n = (Xn : 9n)) corresponds to the
conjunction of the constraink : s & X.£; = X3 & X.£, = X, and of the constraints
corresponding t@, . . ., ¥n. A basicy-termX : scorresponds to the sort constraiit s. For
example, the)-term:

1 = X: persorflikes= X,
age=- Y :int)

is identified with the constraint:

¥ = X:person& X.age=Y & Y:int& Xlikes= X.

Thus, the constraing is a conjunction of atomic sort constraints of the faxms and atomic
feature constraints of the ford£ = Y. The interpretation of the sort and feature constraints
over the intended domain is straightforward, given that sorts are interpreted as subsets of the
domain and features as unary functions over the domain.

A value lies in the set denoted by theterm ¢ in an interpretatior? if and only if the
constraintX = Z & v is satisfiable in the interpretatidfy with that value assigned to the
variableX, andZ being the root variable ap. All variables ofi are implicitly existentially
quantified. This reflects our view gf-terms as set-denoting types.

Research Report No. 13 June 1991 (Revised, November 1992)

10 Hassan Ait-Kaci and Andreas Podelski

Rules for unification

Unifying (X1 : %1) and (X2 : ¢2) amounts to deciding satisfiability of the conjunction

1 & Yo & X3 = X,. Thus, the unification algorithm can be specified in terms of constraint
normalization rules. A constraint containing the conjunction over the line is rewritten into an
equivalentconstraint by replacing this conjunction by the constraint under the line. We only
need four rules that are illustrated schematically on an example below. (Refer to the sorts of
Figure 1.)

Equality:

... X:person & U:male & U=X...
... X:person & X:male & U=X...

Sorts:

... X:person & X:male...
... X:man...

Features:

... Xlikes=Y & Xlikes=V ...
... Xlikes=Y & V=Y...

Clash:

D G E
1

One can show that a constraint is satisfiable if and only if it is normalized to a constraint
different from thefalseconstraintL. If we identify every constraint containing a sort constraint
of the formX : L with thefalseconstraint, we omit the clash rule.

In particular, thep-terms(Xy : 1) and(Xz :) are unifiableifand only ifp1 & 2 & X1 = Xz
is normalized into a constraigit different from 1. This constraint; corresponds, apart from
its equalities (between variables), to théerm (unique up to variable renaming) A 1.

2.2 Relative simplification

We use the framework of first-order logic to transform the combined entailment/disentailment
problem into one that can be solved by the relative simplification algorithm.

Matching and entailment

In the remainder of this paper, when considering the matching prapiet,, we will refer
to 1 as the actual parameter and its variables (na¥ief] Z, .. .) as global, and tg-, as the
formal parameter and its variables (nanied/, W, .. .) as local.

June 1991 (Revised, November 1992) Digital PRL

Functions as Passive Constraints in LIFE 11

Inthe Concurrent Constraint Logic Programming framework, the matching problem generalizes
to the entailment problem; namely, whether the actual constraint, also called context, entails
the formal constraint, also called guard [20, 23].

First observe that, for example, the first-order teim= f(Z,f(Y,Y)) matches the term
t, = f(W, V), and that the implication:

YXYYVZ (X = £(Z,(Y,Y)) — 3UIVAW (X = U & U = (W, V)))

is valid. Generally, the ternt; matchest, (notedt; < tp) if and only the implication

X =1t — 3JU3IV (X = U & U = ty) is valid, whereV stands for all variables d. More
shortly,X = t; entailsX = U & U = to.

Note, however, that there is an essential difference betwetmm matching and first-order

term matching. For example, the tefifa, a) matches the terri(V, V). This is true because

first order terms denote individuals. This is no longer true in LIFE. For examplej;-teem
X:f(1=Y:int,2= Z:int) does not match the-termU : f(1 = V,2 = V). Indeed, the
presence of two occurrences of the same sort does not entail that the individuals in that sort be
equal. ThereforeX : s(1 = 1,2 = 1) is less specific than thg-termU : 5(1 = V,2 = V)

only if the root variables ofy; andi, are identical (or bound together).

This doesnot mean that values and operations on them are not available in.\WEat the

above point illustrates is that to recognize that a sort is a fully determined value, and hence to
enforce identity of all its distinct occurrences, one needs this information declared explicitly,
in effect adding an axiom to the formalization of such sorts. So-deckmhsionasorts can

then be treated accordingly thanks to aniiddal inference rule (being a minimal non-bottom

sort is not sufficient). Without this rule, however, equality of distinct occurrences cannot be
entailed and the behavior illustrated is the only correct one. The point of this paper being
independent if this issue, we shall omit this additional rule.

The fact that(X : ¢1) < (U : ¢2), i.e, they-term (X : ¢1) matches thep-term (U : 4»),
translates into the fact that the corresponding constgaientailsthe constraint, & U = X.

This means that the implicatiafy — dU,V,W... ¥, & U = Xis valid. HeredU,V,W...
indicates that all local variables are existentially quantified. The global variables are universally
quantified.

Entailment of general constraints

We will now give a precise explanation of a fact which is well-known for constructor terms.
An actual parametdy matches a formal parametgrif and only if the unification of the two
terms binds only variables of, but no variable of;. In other words, only local, but no global,
variables are instantiated.

40Of course, one can use actual values of gurtreal, or string in expressions with their usual operations as
in most programming languages. In fact, LIFE provides thetmacl freedom to write such expressions mixing
actual values or their sort approximationis real, orstring. Such expressions are either solved by local propagation
or residuatepending further refinements of the non-value sorts into values.

Research Report No. 13 June 1991 (Revised, November 1992)

12 Hassan Ait-Kaci and Andreas Podelski

The unification of the ternty = f(Z,f(Y,Y)) and the ternt, = f(W, V) yields the variable
bindingsW = Z andV = f(Y, Y). On the other hand, the conjunction:

X=1(Z,f(Y,Y)) & U=X& U =f(W,V)
is equivalent to:
X=f(Z,{(Y,Y) & (U=X&V=1(Y,Y)&W=2Z),

and the last part of this conjunction is valid if the local variabled/, W are existentially
guantified.

This is the general principle which underlies the relative simplification algorithm. Namely, the
actual constraing; entailsy», & U = Xif and only if the following holds. Their conjunction

1 & 2 & U = Xis equivalent to the conjunctiopy & 4 of the actual constraing, and a
constrainty)), which is valid if existentially quantified over the local variables. In our cése,

will be a conjunction of equalities binding local to global variables. Formally,

E¢— U, V,W,...¢¥p&U=X
if and only if there exists a formulg,, such that:
E (1 &9 & U=X) o (Y1 & ¢h) and = 3U,V,W... ¢

This statement is correct since validity of the implicatipn— U ¢, & U = Xisthe same as

the validity of the equivalencff; & (FU ¢, & U = X)) « ;. This fact is analogous to the

fact that a set is the subset of another one if and only if it is equal to the intersection of the two.
The condition= 3U,V,W... 45 in the statement expresses that& (U, V,W, ... ¥5) is
equivalent tay.

Towards relative simplification

Operationally, in order to show théX : 1) < (U : ¢2) holds, it is sufficient to show that
the conjunction/, & ¥, & U = X is equivalent ta1 & 15, where), is some constraint
which, existentially quantified over the variablesygf is valid. In our case, agaigy, will be

a conjunction of equalities binding variablesaf to variables of;.

Therefore, in order to tegiX : ¥1) < (U : 12), we will apply successively the unification
rules on the constraint; & ¥» & U = X if they do not modifyzy;. We obtain three kinds of
transformations which are illustrated schematically below. (Refer to the sorts of Figure 1.)

Equality:

L. X=Y & U
Lo X=Y & U=Y L.

June 1991 (Revised, November 1992) Digital PRL

Functions as Passive Constraints in LIFE 13

Sorts:

.. X:man & U=X & U:person...
.. Ximan & U=X...

Features:

... Xlikes=Y & U=X & Ulkes=V ...
... Xlikes=Y & U=X & V=Y...

The equality rule is derived from the corresponding unification rule, which has to be restricted
to modify only the formal constraint. If the actual constraint contains an equality between two
global variables, then one of them may be eliminated for the other. A global variable is never
eliminated for a local one.

The sort rule corresponds to two applications of unification rules, first the elimination of the
local by the global variable, and then the reduction of two sort constraints on the same variable
(hereX : man& X : persor) to one sort constraint (namely/: mana persor). Clearly, if the
“global sort” is a subsort of the “local sort” then this application does not modify the global
constraint. The feature rule works quite similarly.

For example, the rules above can be used to show that-teem:
11 = X : mar(likes=- Y : personage=- | : int)
matches the)-term:
12 = U : persorflikes= V).
Namely, the constraint; & ¥, & U = X:
: man & Xlikes=Y & Y:person& X.age=1I| & | :int

X
U :person & U.likes=V
U =

&
& =X

is normalized into:

X:man & Xlikes=Y & Y:person& X.age=1 & | :int
& V=Y & U=X;

that is,
P & V=Y & U=X

Clearly, U3V (V =Y& U= X) is valid. Therefore, the constraitit entails the constraint
P & U =X

Research Report No. 13 June 1991 (Revised, November 1992)

14 Hassan Ait-Kaci and Andreas Podelski

Relative simplification for entailment

The rules above are such that & v rewrites toy; & ¢'; i.e., the global constraing; is

not modified by the simplification. In this case, we say that the constfasinplifies to’
relatively to the actual constraigh. In other wordsg); acts as a context relatively to which
simplification ofy is carried out. In general, this context formula may be any formula. Hence,
we can reformulate the rules above as relative-simplification rules. We use the ngfkai[i@n

to mean thatp is simplified into’ relatively to the context formul@. Schematically,

Equality:
L. U=X L. oy
VS 2
Sorts:

... U=X& U :person...
L U=X& .

[...X:man...]

Features:

...U=X&U.lkes=V ...
L UE=X&VEY L

[...Xlkes=Y ...]

Using these rules, the constraiit = U = X & U : person& U.likes = V in the previous
example simplifies tg)y = U = X & V = Y relatively to:

Y1 = X:man& X.likes=Y & Y : person& X.age=1& | :int.
Invariance of relative simplificatiois the following property. Ify simplifies toy’ relatively

to ¢, then the conjunction ap with ¢ is equivalent to the conjunction @f with ¢.

This invariance justifies the correctness of the relative simplification algorithm with respect to
entailment. Namely, ify simplifies tot’ relatively to¢, and if¢’ consists only of equations
binding local variables, theg entailsi.

Proof of completeness of the algorithm needs the assumption that tifé sketeatures is
infinite. Note that exactly thanks to the infinitenessfobur framework accounts for flexible
recordsj.e., the indefinite capacity of adding fields to records.

Relative simplification for disentailment

If the result of the matching test; < - is negative,i.e., the actual constraint does not
entail the formal constraint, then we must know more; namely, whether the two terms are
non-unifiable. Non-unifiability is equivalent to the fact that the actual parameter will not

June 1991 (Revised, November 1992) Digital PRL

Functions as Passive Constraints in LIFE 15

match the formal one even when further instantiagegl; when further constraints are attached
as conjuncts. Logically, this amounts to saying that a context forgesentailsa guard
constrainty if and only if the conjunctionp & 4 is unsatisfiable. In terms of relative
simplification,¢ disentailgp if and only if i) simplifies to thdalseconstraintl relatively tog.

For exampleX : maleis non-unifiable withJ : woman® The constraintl : woman& U = X
simplifies toL relatively to the constrairX : male sincewomanA male= L, using a rule of
the form indicated below, and then the Clash rule.

Sorts:

...U=X & U:woman...
...U=X & U:womanA male...

[...X:male...]

The following example shows that a sort clash cannot always be detected by comparing sorts
in the formal constraint one by one with sorts in the actual constriagntpne needs several
steps with intermediate sort intersections.

They-termZ : T(likes= X : malg friend=- Y : femalg is non-unifiable with they-term
W : T(likes= U : personfriend= U). The constrainip = X : male & Y : female
disentails the constrairt = U = X & U = Y & U : person Operationally, the constraint
simplifies to_L relatively to the contex¢. Here are the steps needed to determine this:

.. U=X&U=Y&U:person...
. U=X&U=Y& U:personn male...
.. U=X&U=Y&U:manafemale...

1

There is an issue regarding the enforcing of functionality of features in the simplification of a
constraint) relatively to a contex#. This may be explained as follows. Let us suppose that
two global variableX andY become bound to the same local variableThen,

¢ the contex® entails the constraint only if ¢ containsX = ; and,
¢ the contex® disentails the constraint if the same path of features starting froband
Y, respectively, leads to variabl¥sandY’, respectively, whose sorts are incompatible.

There are essentially two cases, depending on whether a new local variable has to be introduced
or not. Each case is illustrated in the next two examples.

They-term?

¢ = Z:T(likes= X: T(age= |1 : poseveip,
friend = Y : T(age= I, : posodd)

SRefer to the sorts of Figure 1.
5We assume thatosevern posodd= L.

Research Report No. 13 June 1991 (Revised, November 1992)

16 Hassan Ait-Kaci and Andreas Podelski

is non-unifiable with they-term:

P = W: T(likes= U,
friend = U)

That is, the constrainp disentails the constraint. Operationally, with the contex, the
constraint) simplifies, in a first step, to:

W=Z&U=X&U-=Y.
Then, using the rule:

LoU=X&U=Y L
Lo U=X&U=Y&I=11 &=y ...

[... Xage=11 & Y.age=1; ...]

whered is a new variable, to:
W=Z&U=X&U=Y&JI=11&JI=1,

and finally to L, since the sorts df andl, (poseverandposodd are incompatible.

The rules enforce the following property: a global variable is never bound to more than one
local variable. Therefore, if the variab¥eor the variableY is already bound to a local variable,
no new local variable must be introduced. This is illustrated by the second example.

They-term:
¢ = Z:T(likes= X: T(age= |1 : poseveip,
friend= Y : T(age= I, : posodd,
age= 1)
is non-unifiable with they-term:
P = W: T(likes= U,
friend = U(age= J),
age=J).
Operationally, with the context, the constrain{y simplifies, in a first step, to:

W=Z&U=X&U=Y&J=I;.

Then, using the rule:

June 1991 (Revised, November 1992) Digital PRL

Functions as Passive Constraints in LIFE 17

L U=X&U=Y&I=1 ...
L U=X&U=Y&I=11&I=1y ...

[... Xage=1; & Y.age= 1y ...]

whered is a new variable, to:
W=Z&U=X&U=Y&JI=11&JI=1,

and finally to_L, for the same reason as above.

In order to be complete with respect to disentailment, the algorithm must keep track of all pairs
of variables(X,Y), ..., (X, Y') whose equality is induced by the binding ¥fandY to the

same local variable. That is, it must propagate equalities along features. In our presentation,
it will be conceptually sufficient to refer explicitly to the actual equalities binding the global
variables to a common local variable. Practically, this can of course be done more efficiently.

Specifying the relative simplification algorithm

If v & U = X simplifies toy’ relatively tog and no relative-simplification rule can be applied
further, then:

e ¢ entailsy & U = X; formally,
= ¢ — 3U,V,W...(¢ & U = X),
if and only if ¢’, with the variables of) existentially quantified, is valid; formally:
= 3U,V,W... 4.

e ¢ disentailsy & U = X; formally:
= ¢ — -3U,V,W...(¢ & U = X),
ifand only if¢' = L.

This test isincremental Namely, every relative simplification of the constraifito some

constrainty’ relatively to the context is also a relative simplification relatively to an
incremented context & ¢’, for any constraing’.

Recapitulating, our original goal was a simultaneous test of matching and non-ilityfialp

two giveny-termsy, and,. This test was recast as a test of entailment and disentailment
for the constraints to which the-terms dissolve. Namely, X andU are the root variables of

11 andy,, respectively, the test whethgg entails or disentailg, & U = X.

In our setting, the entailment test succeeds if and only,ifs a conjunction of matching
equationsij.e., of the formy, = U = X & V=Y & W= Z..., where the local variablds,
V, W, ... are all different.

Research Report No. 13 June 1991 (Revised, November 1992)

18 Hassan Ait-Kaci and Andreas Podelski

3 Background

We introduce briefly the notions that we have used informally in Section 2. For a thorough
investigation of these notions, the reader is referred to [6, 5].

We start with the notion of OSF-algebras. They are the semantic structures interpreting
complex data objects built out of features and partially-ordered sorts. Mathematically, an
OSF-algebra formalizes access into the parts making up a piece of datum as well as their
categorization. We then introduce OSF-constraints. They are important since, although they
are formal objects which are part of a logical formalism, they are also quite primitive to
constitute a low-level implementation logic.We then formalizey-terms as they not only
constitute a syntactically pleasant and convenient surface language for data objects in LIFE,
but also comprise a syntactic OSF-algebra. Namely, they are representations of values of the
domain of the standard interpretation. Finally, we summarize a few facts about this formalism
that are relevant as related to the global contents of the paper.

3.1 OSF-algebras and OSF-constraints

The building blocks of OSF-algebras are sorts and features.

An order-sorted feature signatuger simply OSF-signature) is a tup{é, <, A, F) such that:

S is a set ofsortscontaining the sorts and | ;

< is a decidable partial order @¢hsuch thatL is the least and” is the greatest element;
(S, <, A) is alower semi-latticegA ' is called the greatest common subsort of ssrts
ands));

F is a set offeature symbols

An OSF-signature has the following interpretation. A$F-algebraover the signature
(S,<, A, F)isastructure:

A=(D*, (SA)ses) (ZA)lef)

such that;

D4 is a non-empty set, called tid@mainof A (or, universe);

for each sort symbalin S, s* is a subset of the domain; in particular* = D* and
1A=

the greatest lower boun&(B) operation on the sorts is interpreted as the intersection;
i.e., (sA §)* = s* n g4 for two sortssands’ in S.

for each featurd in F, £4 is a total unary function from the domain into the domain;
i.e, tA: DA DA

"In fact, the reader familiar with implementation techniques of Prologti@i&d recognize that they are of the
exact same granularity as WAM term representation and instructions.

June 1991 (Revised, November 1992) Digital PRL

Functions as Passive Constraints in LIFE 19

The notion of OSF-algebra calls naturally for a corresponding notion of homomorphism
preserving structure appropriately. Namely,

Definition 1 (OSF-Homomorphism) An OSF-algebra homomorphism: A — B between
two OSF-algebrasi andB is a functiony : D4 — D? such that:

o v(£A(d)) = £2(v(d)) foralld € D#4;
o v(s*) ¢

It is straightforward to verify that OSF-algebras together with OSF-homomorphisms form a
category. We call this category OSF.

Let ¥ be a countably infinite set of variables.

Definition 2 (OSF-Constraint) An atomic OSF-constraint is one of:

o X5,
o X=X,
o XtL=X,

where X and Xare variables inV, sis a sortinS, and/ is a feature inF. An OSF-constraint
is a conjunction of atomic OSF-constraints.

One reads the three forms of atomic OSF-constraints as, respectidlgs‘in sorts,” “ X

is equal toX',” and “X' is the featurel of X.” The setVar(¢) of variables occurring in an
OSF-constraing is defined in the standard way. OSF-constraints will always be considered
equal if they are equal modulo the commutativity, associativity and idempotence of conjunction
“&." Therefore, a constraint can also be formalized as the set consisting of its conjuncts. As
usual, the empty conjunction corresponds to the propositional constant interpratesl as

Let A be an OSF-algebra. We cathl(A) = {a : V — D*} the set of all possible valuations
in the interpretatiomd. The semantics of OSF-constraints is straightforward.

Given A is OSF-algebra, an OSF-constraints satisfiablein A, if there exists a valuation
a1V — D4 such that4, a |= ¢, where:

A,al=X:s ifandonlyif a(X) € s#;
A,al=X=Y ifandonlyif a(X) = a(Y);

A, a = XL = Yifand only if £4(a(X)) = a(Y);
Aal=¢ & ¢' ifandonlyif A,a = dandA,a = ¢'.

3.2 -Terms

We now introduce the syntactic objects that we intend to use as expressions of approximate
descriptions to be interpreted as subsets of the domain of an OSF-algebra. Later, we will use
them as well as representations of values constituting the domain of a specific interpretation.

Research Report No. 13 June 1991 (Revised, November 1992)

20 Hassan Ait-Kaci and Andreas Podelski

Definition 3 (y-Term) A<)-terms is an expression of the form:

X:s(ly = 1, ..., 40 = ¢n)

where

X is a variable iny called the root ofy;

s is a sort different fromL in S;

L1, ..., L, are pairwise different features ifi, n > 0;

i1, ..., ¥y are againy-terms; and,

e no variable Y occurring inp is the root variable of more than one non-trivigiterm
(i.e., differentthan Y T).

Note that the equation above includes: 0 as a base case. That is, the simpieserms are
of the formX: s.

We can associate toyxtermey = X : S(£1 = 1, ...,€n = ¥n) the OSF-constraint:
d(P)=X:s& X1 =Y1& ... & Xy =Y & ¢(¢1) & ... & ¢(2n)

where Yy, ..., Y, are the roots off, ..., ¥n, respectively. We say that the OSF-constraint
#(v) is obtained frondissolvinghe-terms, and refer to the OSF-constraint as thesolved
-term We will often deliberately confuse @-term ¢ with its dissolved formg(+) and

simply refer tog(v) simply asi.

Given the interpretatio, thedenotatior{ /] under a valuatiorx : ¥ — D of as-term
1 with root X is given as:

[¥1** = {de D* | a(X) = d, 4,a F ¢}

Note that this is either the singletgr(X)} or the empty set.

Thetype-as-set denotatiaf ay-term is defined as the set of domain elements:

[v1= U [¥1*=

aeVal(A)

This amounts to saying that:
[41* = {d € D* | there existsx € Val(A) such thaix(Z) = d, and 4, a |= IX Z: ¢}

whereZ is a new variable not occurring i, X = Var(y), Z : ¢ stands foiZ = X & 4, and
X e X is’s root variable.

June 1991 (Revised, November 1992) Digital PRL

Functions as Passive Constraints in LIFE 21

A -termq) with root X corresponds to a unique rooted grapivhich is the direct translation
of the constraint) together with an indication of the root. The nodesgadre exactly the
variables ofip. A nodeZ is labeled by the sor if the conjunctiomy contains a non-trivial
sort constrainZ : s, and by the sort, otherwise. For every feature constraf = Z the
graphg has a directed edd&, Z) which is labeled by the featuée The root ofg is the node
X. Clearly,g is the natural graphical representation/ot

3.3 Syntactic interpretations

Among all OSF-algebras, there are those whose domain elements are concrete data structures.
We call thesesyntactic interpretations We will now present three important examples
obtained directly from the syntactic expressiongfeierms. They turn out to beanonical
interpretationsfor OSF-constraint8.

The mostimmediate syntactic OSF-interpretation is the OSF-algebfatesfns. The domain
of is the set of alli-terms, up to graph representation. That is, we idenfifterms
as values of if they are represented by the same graph. For example, thetemms
Y:gl1=X:8,L=>X)andY : s({1 = X,£, = X : &) clearly correspond to the same
object. Indeed, they have the same OSF-graph representation.

Sortss € S are interpreted as:
s={y € D| ¢ < s, wheres is the root sort of the graph af},

and featured € F are interpreted as functios: D — D as follows. Lety be ay-term
andg its graph. If(X,Y) is the edge ofj labeled by¢, thenf(g) is they-term represented
by the maximally connected subgraghof g rooted at the nod¥. That is,g’ is obtained by
removing all nodes and edges which are not reachable by a directed path from thé node

If X does not have the featufei.e., there is no outgoing edge from the rootglabeled’,
thent is they-termZ, , . T, for a new variabl&, ,, uniquely determined by the featut@nd
they-termap.

For example, takingg = X : T({1 = Y : s,£2 = X), we havel,(¢) = Y : s, £(9) = ¢, and
£3(’l/1) =2y T.

We obtain two other examples of OSF-algebras when we factorize)#ieem domain by
further identifying values. The first one identifies tgyeterms which are equal up to variable
renaming. The obtained domain obviously spans an OSF-algebra. We call this OSF-algebra

The second one is obtained frerby further identifying twap-terms if their (possibly infinite)

tree unfoldings are equal. A tree unfolding is obtained fromterm by associating a unique

node to every feature path. It is well known that a rooted directed graph represents a unique
rational tree [14]. In our case, we obtain trees whose nodes are labeled by sorts and whose

8Refer to Figure 2 on Page 8 for an example.
%If an OSF-constraintis satisfiable in some interpretation, then it is also satisfiable in all canonicalinterpretations.

Research Report No. 13 June 1991 (Revised, November 1992)

22 Hassan Ait-Kaci and Andreas Podelski

edges are labeled by features. We call these (rational) OSF-trees. It is again clear that the set
of all OSF-trees spans an OSF-alge®i&’

Formally, OSF-algebras can also be introduced as logical structures, namely models providing
interpretations for the sort symbols as unary predicates and the feature symbols as unary
functions, which satisfy th8ort Axiomsaying, for all sorts ands/,

X:s& X:9d — X:sad.

Furthermore, both and7 satisfy aConstructibility Axionrstating essentially the satisfiability
of any OSF-constraing coming from dissolving a-term. More precisely, ifY’ = Var(¢)
and, fori = 1,...,n,X.6 =Y ¢ ¢ for any variableY, andY; ¢ Var(¢), andX; € X, then this
axiom states the validity of:

The constructibility axiom is a generalization of the axiom of functionality which is valid for
first-order terms. Namely, the axiom which guarantees that, given a constructor syofibol
rankn, an individualX = f(Y1, ..., Yy) exists if individualsy; exist,i = 1,...,n. Formally,
takingg = X: f,

YY1... VY. XX F& X1I=Y1 & ... & Xn=Y,.

The form we give for constructibility is indeed more general than plain functionality since it
states the existence of something which is not valid for first-order tezrgsself-referential
individuals. For examplelX. X.£ = X is obtained as an instance of our axiom by taking
n=0and¢ = X£ =X

3.4 OSF-unification

We describe next how to determine whether an OSF-consigaistconsistentj.e., if it is
satisfiable in some OSF-algebs&—and, therefore, in particular in . Unification of two
1-terms reduces to this problem.

Definition 4 (Solved OSF-Constraints) An OSF-constraing is called solvedf for every
variable X,¢ contains:

e at most one sort constraint of the form X, with L < s;
e at most one feature constraint of the fornZ X% Y for each?; and,
¢ no other occurrence of the variable X if it contains the equality constraiat X.

197 is essentially the feature tree structure of [7] and [8, 25]. The difference lies in our using partially-ordered
sorts and total, as opposed to partial, features.

June 1991 (Revised, November 1992) Digital PRL

Functions as Passive Constraints in LIFE 23

In [6, 5], we show that an OSF-constraint in solved form is always satisfiable. Now, by
Definition 3, the OSF-constraint obtained as the dissolved form offaterm is de facto

in solved form!! Hence, such a constraint is always satisfiable. It is so, in particular, in the
canonical interpretation with, interestingly enough, the valuation that assigns to each variable
Xin 1 the value inD that is the veryp-term rooted inX in ¢. For this reason, &-term can

also be seen as a variable substitution.

Given an OSF-constraing, it can be normalized by choosing non-deterministically and
applying any applicable rule among the transformations rules shown in Figure 3 until none

Feature Decomposition:
P& UL=VE&UL=W

Y&ULEVE W=V

(B.1)

Sort Intersection:
YpY&U:s&U:¢

P& U:sAd

(B.2)

Variable Elimination:

Inconsistent Sort:

P& XL
(B.4)

Variable Clean-up:

$p&U=U
(B85 —

Figure 3. Basic simplification

applies. A rule transforms the numerator into the denominator. The exprggXiovi stands
for the formula obtained frorg after replacing all occurrences ¥ty X.

Theorem 1 (OSF-Constraint Normalization) The rules of Figure 3 are solution-preserving,
finite terminating, and confluent (modulo variable renaming). Furthermore, they always result
in a normal form that is either thialseconstraintL or an OSF-constraint in solved form.

"More precisely, this is true if we forget superfluous trivial sort constraints of the Yorr .

Research Report No. 13 June 1991 (Revised, November 1992)

24 Hassan Ait-Kaci and Andreas Podelski

For our purposes, the constraifito be normalized will be of the forng, & 1, & X1 = Xy;

i.e., the conjunction of the dissolvefttermsy; and, together with an equation identifying
their root variables<; andX,. If ¢ normalizes to thdalseconstraint, then the twe-terms

are non-unifiable. Otherwise, the resulting solved OSF-constraint is a conjunction of equality
constraints and of the dissolved form of soghi¢erm. Thisy-term isthe most general unifier

of ¥1 and,, up to variable renaming. We shall see that #hiserm has two equivalent
order-theoretic characterizatiore.(Propositions 3 and 4).

3.5 OSF-orderings and semantic transparency

In this section, we first introduce the notion efidomorphic approximatiowhich captures
precisely and elegantly object inheritance. We also show how it relates to the logic and type
views.

Endomorphisms on a given OSF-algeb4ai.e., homomorphisms frond to A, induce a
natural partial ordering.

Definition 5 (Endomorphic Approximation) On each OSF-algebrad an approximation
preorderC 4 is defined such that, for two elements d and e-th Bapproximates if and only
if e is an endomorphic image of d. Formally,

dC 4 e iff y(d) = e for some endomorphism: A — A.

We shall omit subscriptin@ 4 and writeC when A = . Notice that this ordering ott-terms
as values of the domain of translates into an information-theoretic approximation ordering on
-terms as types.

We note that endomorphisms on are graph homomorphisms with the additional sort-
compatibility property. A node labeled with saiis always mapped into a node labeled vgth

or a subsort o6. An edge labeled with a feature is mapped into an edge labeled with the same
feature. Thus, endomorphic approximation captures exactly object-oriented class inheritance.
Indeed, if an attribute is present in a class, then it is also present in a subclass with a sort that
is the same or refined. Since features are total functions, this also takes care of introducing
a new attribute in a subclass: it refin€s Note also, that the restriction gfto the set of

nodes defines a variable binding; it corresponds to the notion of a matching substitution for
first-order terms.

The following fact was established in [6, 5].

Proposition 1 (¢-Terms as Filters) The denotation of &-term in is the set of ali)>-terms
it approximates; i.e.,

[¥] ={¢' €D [y Ty

June 1991 (Revised, November 1992) Digital PRL

Functions as Passive Constraints in LIFE 25

The next ordering is the type ordering grterms which we informally called “more specific
than” in Section 1.2 and Section 2.

Definition 6 (»-Term Subsumption) A i-termq is subsumed by -term+)’ if and only if
the denotation of is contained in that o’ in all interpretations. Formally,

y <y’ iff [914 C[914
for all OSF-algebrasA.

In fact, it is sufficient to limit the above statement to the OSF-algebra oaly[] C [¥'].

The next and last ordering is a logical orderingerms. We state it here in less general
terms than in [6, 5].

Definition 7 (y-term Entailment) Aq-terme entailsay-terms)’if and only if, as constraints,
¥ implies the conjunction @f’ and X= X’; more precisely,

p=y iff E ¢ — U X=X &)
where X, Xare the roots ofy and+’ and/ = Var(y').
It is again sufficient to state the validity of the implication in the OSF-algebra only (namely,

using |=). This is not true in the more general wording and holds here only because the
constraints are obtained by dissolvithgerms and their root variables are bound together.

Proposition 2 (Semantic Transparency of Orderings) The following are equivalent:

e YL 1 is an approximation of’;
o Y < ' is a subtype of};
o Y= 1 entailsy)’

o [¥] Cl¥] the set of-terms filtered by is contained in that filtered by’

The following two propositions are straightforward. Lt and vy, be two ¢-terms with
variables renamed apaig., such thavar(y1) nVar(y) = 0. LetX; andX; be their respective
root variables. Lep be the normal form of the OSF-constraifit & ¥, & X1 = Xo.

Proposition 3 (¢-Term Unification) The normal formp is thefalseconstraint if and only if
[0 N [¥2]* = 0, for all OSF-algebrasA. Otherwise,¢ is the conjunction of equality
constraints and of the dissolved version of safaerm«+. Thisy-term is the<-GLB of,
and, up to variable renaming; i.e[#]* = [¥1]4 N [¥2]4.

Proposition 4 (C-LUB of two ¢-terms) The ¢-term ¢ above is approximated by bot
and, and is the leasty-term forC (i.e., approximating all other ones) with this property.

Research Report No. 13 June 1991 (Revised, November 1992)

26 Hassan Ait-Kaci and Andreas Podelski

4 Entailment and disentailment of OSF-constraints

This section deals formally with all the apparatus presented and used informally in Section 2.2.

In the following, we usep as thecontextformula. It is assumed to be @&SFconstraint in
solved form, although not necessarily coming from dissolving a sipglerm. The variables

in ¢ areglobal. We shall use¥' to designate the set of global variabMes(¢) and the letters
XY, Z, ..., for variables inY. We usey, a dissolved)-term, as thegguard formula. The
variables i arelocal to ¢; i.e., Var(¢) N Var(¢) = 0. We shall usé/ to designate the set of
local variables/ar(¢) and the letter), V, W, ..., for variables ifi{. The letterU will always
designate the root variable gf. We also refer t@ as theactual parameter, and t¢ as the
formal parameter. By extension, we will often use the qualifiers global/local, actual/formal,
and context/guard, with all syntactic entitiesg, variables, formulae, constraints, or sorts.

We investigate a proof system which decides two problems simultaneously:

e the validity of the implicatiovX (¢ — 3U. (¢ & U = X));
¢ the unsatisfiability of the conjunctioh& ¥ & U = X.

The first test is called a test f@ntailmentof the guard by the context, and the second, a
test fordisentailment This second test is equivalent to testing the validity of the implication
VX (¢ — -3U. (¥ & U = X)).

Since both tests amount to deciding whether the context implies the guard or its negation, all
local variables are existentially quantified and all global variables are universally quantified.

The relative-simplificationsystem for OSF-constraints is given by the rules in Figures 4, 5,
and 6. An OSF-constraint simplifies toi’ relatively to¢ by a simplification rulep if % is

an instance op and the applicability condition (ot and ont) is satisfied. We say thak
simplifies toy’ relatively tog if it does so in a finite number of steps.

The relative-simplification system preserves an important invariant proegtpbal variable
never appears on the left of a variable etjtyaconstraint in the formula being simplified
Thus, an equalityJ = X is a directedrelation binding the local variabl& to the global
variableX. Furthermore, a global variable is never eliminated by a local ongcerversa

A set of bindingsU; = X;, i = 1,...,nis afunctional bindingif all the variablesU; are
mutually distinct.

The effectuality of the relative-simplification system is summed up in the following statement:
Effectuality of relative-simplification The solved OSF-constraid entails
(resp., disentails) the OSF-constraii). (U = X & %) if and only if the normal

forme’ of ¢ & U = X relatively to¢ is a conjunction of equations making up a
functional binding (resp., is thialseconstrainty’ = 1).

June 1991 (Revised, November 1992) Digital PRL

Functions as Passive Constraints in LIFE 27

Feature Decomposition:
P& UL=VE&UL=W

(F.1)
Y& ULE=VE W=V

Relative Feature Decomposition:

Pp&U=X&ULZV
(F.2) e UZXE VLY fXLZYE¢

Relative Feature Equality:
P&U=ZX & U=X&V=Y X0l = Ys € §, Yol = Yo € ¢

F.3 :
(F3) P&U=ZX &U=X&V=Y,&V=Y, andvV=Y:¢4

Variable Introduction:

’L,b&U:X]_&U:Xz ifxl.liY]_E(ﬁ,Xz.linE(ﬁ
(F.4) . . : : and i ¢ Var(%) and ¥ ¢ Var(y)
PEU=X&U=X&V=Y1&V=Y2 yhereVisanewvariable

Figure 4. Simplification relatively tap: Features

There are two technical remarks to be made. Firstly, observe that in our formulation of the
entailment/disentailment problem, the implication containky oneequalityU = X binding

only oneglobal variable. However, this is not a restriction. Equatioas= X, ...,U, = X;

can be equivalently replaced by addikg = X.1 & ... & X, = X.1 to the contexip and

U =U1l& ... & U, =Un& U = Xtoy, whereX andU are new. That is, one obtains

the conjunction of one equality = X and a guard which, again, is a dissolvederm.

Secondly, the fact that is a dissolved)-term rooted irJ ensures that the test of entailment of
¥ & U = X by ¢ does not depend on whether the implication holdslif©SF-interpretations,
or only in , or7. This is not necessarily so ¥ is not the root ofiy). Indeed, let us
assume that) is not the root of; for example, take) to beV.£ = U. Clearly, while
VX (T — 3U3V (¢ & U = X)) holds in andZ, it does not hold in all OSF-algebras where it
is not guaranteed that every element iséheage of some other element. In (a#{), this is
the case since any elemefits thef-image of at least one element; naméiy{ = X).

Effectuality of relative-simplification is the central result of this section. We noveged
through the technical details aimed at establishing its claim in the form of two theorems:
Theorem 2 and Theorem 3.

Research Report No. 13 June 1991 (Revised, November 1992)

28

Hassan Ait-Kaci and Andreas Podelski

Sort Intersection:
Pp&U:s&U:¢

P& U:sAd

(S.1)

Sort Containment:
Y& U=X&U:s

S.2
(5-2) & U= X

Sort Refinement:
Y& U=X&U:s
P& UZ=X&U:sAd

(S.3)

Relative Sort Intersection:
Yp&U=X&U=X

(S.4)
P& U=X&U=X&U:sAs

Sort Inconsistency:

p&U:L
(S5) ————

ifX:scg,ands<s

ifX:s e¢,andsrns <s

ifX:se¢, X :5 €é,
sAS <s,sAS <9,
and U: s ¢ «, for any sort§

Figure 5. Simplification relatively tas: Sorts

Relative Variable Elimination:
P& UZ=ZX&V=X

P[U/V] & U=X& V=X

(E.1)

Equation Entailment:
Pp&UZ=X&UZY

E.2
(E2) $& U =X

if Ve Var(4),V=X¢1,
and U# V

ifX =Yorif X=Ye ¢.

Figure 6. Simplification relatively tap: Equations

June 1991 (Revised, November 1992)

Digital PRL

Functions as Passive Constraints in LIFE 29

4.1 Termination of relative simplification

For the purpose of showing that the relative simplification rules always terminate, we introduce
an additional set of rules shown in Figure 7 extending basic simplification. These rules are
not meant to be used in the effective operation of basic simplification, but only serve in our
proof argument. The idea is that relative simplification of a guardlatively to a contex$¢

can be “simulated” by normalizing the formwa& ¥ & U = X using basic simplification
(Figure 3) together with the rules of Figure 7. It is not a real simulation, however, as
Rules (B.1)—(B.5) have for side effect to destroy the context. The point is that one application
of a relative simplification rule can be made to correspond to at least one application of one of
Rules (B.1)—(B.5), (X.1)—(X.3). Since this latter system can be shown to terminate, then so
can relative simplification.

Rules (X.1)—(X.3) perform essentially the same work as Rules (B.1) and (B.2) except that they
do no erase parts of the formula. In Rule (X.1), we denote~hy the reflexive, symmetric

and transitive closure of= (that is, the equivalence relation on the variables occurring in the
constraint which is generated by thepairs between variables in the constraint).

Extended Feature Decomposition:
p&UL=U & ULV

(X.1) ifU’ . U"
P& UL=U & ULZU"& U= U

Extended Sort Intersection 1:

(X.2) p&U:s&U:s ifsAs < &' foranys’
. Y& U:s&U:ss ' suchthat U: s” € ¢

Extended Sort Intersection 2:

p&U:s&U:¢ ifsAs < & forany &

%3 P& U:s&U:s&U:ss’ suchthat U: s” € ¢

Figure 7. Rules extending basic simplification

Lemma 1 The extended basic-simplificationrules (B.1)—(B.5), (X.1)—(X.3) define equivalence
transformations; furthermore, they are terminating.

Proof: The first statement is clear. The proof of the second statement is an extension of the
termination proof of the basic simplification rules (B.1)—(B.5) from [6, 5]: (X.1) can be applied
only a finite number of times, since the number of equivalence classes partitioning the finite set of
variables occurring in the constraint which is to be simplified decreasésai each application.

(X.2) and (X.3) can be applied only a finite number of times, since they can be applied at most once
for every sort occurring in the constraint which is to be simplified.]

Research Report No. 13 June 1991 (Revised, November 1992)

30 Hassan Ait-Kaci and Andreas Podelski

Lemma 2 Lety & U = X simplify toy’ relatively to¢ by a relative-simplification step not
using Rule (F4). Thenp & ¥ & X = U simplifies to¢’ & " by at most one extended
basic-simplification step and a finite number of variable elimination (B.3), witéend "
are equal up to variable renaming.

Proof: It can be seen that each relative simplification rule, except for (F.4), pomds to

one or several extended basic-simplification rules. Rules (F.1)—(F.3) correspond to Rules (B.1)
and (X.1). Rules (S.1)—-(S.4) correspond to Rules (B.2), (X.2) and (X.3). Rules (E.1)-(E.2)
correspond to Rule (B.3). This, and the fact that extended basic-simplification rules are equivalence
transformations, allow us to conclude. |

Lemma 3 Let ¢ simplify toy’ of the formiy & U; = X; & Uy = X, by an application of
Rule (F.4) relatively tap. Then,? & U; = X; simplifies to the same constraitit by an
application of Rule (F.3) relatively te.

Proposition 5 The relative-simplification rules are terminating.

Proof: This is proved by induction om, using Lemma 2 and Lemma 3. For every relative-
simplification chainy; & Uy = Xy, ..., ¥n & Uy = X, relatively tog, there exists an extended-basic
simplification chain of lengtm + k, wherek 0. This chain starts with the basic constraint

¢ & P & X3 = U; & X = U, whereX = U stands for the equations we have added so that each
global variableX is bound to some local variablé (which, if necessary, is chosen new).

Since, according to Lemma 1, extended-basic-simplification chains are finite, so are relative-
simplification chains.]

4.2 Correctness and completeness

We first note another consequence of the lemmata of the last sectioW.dtand for the new
local variables introduced by Rule (F.4).

Proposition 6 Lety & U = X simplify toe’ relatively tog. Then,¢ & v & U = X and
V. (¢ & ¢') are equivalent.

Proof: Let us first assume that & U = X simplifies toy’ relatively to¢, not using Rule (F.4).
Then,¢ & ¥ & U = Xand¢ & ¢’ are equivalent by Lemma 1 and Lemma 2. ke& U = X
simplifytoy & U = X & V= X; & V = X; relatively tog, by an application of Rule (F.4). Clearly,
p& P& U=Xandg & V. (¢ & U = X & V = X;) are equivalent. Thus, with Lemma 3, we can
apply the first part of the proofopt & U = X & V = X;.]

The next corollary states a property which is important for showing that relative simplification
can be used for proving entailment, tiheariance property

Corollary 1 (Invariance of Relative-Simplification) If ¢y & U = X simplifies ta)’ relatively
to ¢, thendU. (¢ & ¥ & U = X) and3UTV. (¢ & ¢') are equivalent.

June 1991 (Revised, November 1992) Digital PRL

Functions as Passive Constraints in LIFE 31

It is helpful to list systematically the normal-form properties of the relative-simplification
system.

Proposition 7 The constraing is in normal form relatively tap if and only if the following
conditions are satisfied:

e 7 isin solved-form;

¢ a global variable X may occur ig only in the form. = X;
o if X = _ € ¢, then X does not occur i;

o ifV=Xey,and. = XL e ¢, then-=V.L & 9,

e ifV=Xeyp,andX:se ¢,andV:s € ¢, thené< s;

V=X,
V=Y

X = XA,
Y =Y.

W= X,

o if € 1, and € ¢, then W; v € P,

for some variable W;

V=X,

; X,)
oif -y 61/1,andY:S2 € ¢, thenV:se ¢,

for some sort s such thats s; and s< s,.

Proof: by inspection of the relative-simplification rules.]

Proposition 8 Lety’ be a normal form ofy & U = X relatively tog. Let¢’ be the constraint
obtained fromp eliminating all redundancies according to the rules of Figure 8, and removing
bindings V= _ of new variables introduced by (F.4). Then, the constra@ih& ' is a
solved-form of the constraigt& + & U = X, up to variable renaming.

Proof: According to Proposition 6 & ¥ & U = X is equivalentta ¢ & ¥ ', where stands

for the new variables. According to the last three conditions of Proposition 7, Rules (R.1), (R.2)
or (R.3) perform equivalence transformations. Thus, if applications of these rules reodifg”,
theng’ & ¢’ is equivalent tap”’ & '.

According to the first four conditions of Proposition#, & ¥’ is in solved-form up to variable
eliminations via Rule (B.3). More precisely, these variable eliminations are applications of Rule (B.3)
using new equations of the forvth= X introduced by Rule (F.4). They produce possibly equations of
the formX = Y between global variables; then, further variable eliminations consist of applications
of Rule (B.3) using these new equations. As a last step, these new equations are removed in order
to obtain a constraint which is exactly equivalentté& ¥ & U = X, and not just up to existential
guantification of new variables.]

Corollary 2 If the normal form ofy & U = X relatively tog is not L, theng & ¥ & U = X
is satisfiable.

Research Report No. 13 June 1991 (Revised, November 1992)

32 Hassan Ait-Kaci and Andreas Podelski

Redundant Sort Elimination:

& X:s ifU =X e, and

(R.1) U:s €y forsomes<s

Redundant Feature Elimination:

b & X =Xl & Xy = Xp.b
(R.2) ifU=X €, U=Xo €
é & X =X

Entailed Sort Redundancy Elimination:

P& X1:S& Xp: s
R.3 ifU=Xiey,U=X €
(R.3) 5 XS 1€ Y 2 €Y

Figure 8. Redundancy elimination rules

Proof: In [6, 5] we showed that a constraint is satisfiable if and only if it has a solved-form; that is,
its basic normal form is different fromThe statement then follows from Proposition 8.]

Theorem 2 (Disentailment) Lett’ be a normal form ofy & U = X relatively tog. Then,¢
disentailsiU/. (¢ & U = X) ifand only ify' = L.

Proof: If 4" =, then (¢ . ¥ "} is valid. From Corollary 1, it follows that
(¢ . ¥&U = X) is valid, too. Ify' =, then Corollary 2 can be applied.]

Proposition 9 If the normal form)’ of ¢» & U = X relatively to¢ is not a conjunction of
equations representing a functional binding, the& —3U. (¢ & U = X) is satisfiable.

Proof: The assumption on the form @f means that one of the three following cases is true, for
someV Var(y ') boundtosom& Var(¢);i.e,V =X ¢ ’.

[(1)] ¥ ' contains a sort constraint &f say,V : s; or,
[(2)] ¥ ' contains two equations oy say,V =X & V =; or,
[(3)] ¥ ' contains a feature constraint ¥psay,V.£ = W.

For each case, we can find a constraihsuch thaip & ¢’ is satisfiable and disentails. Then,

¢ & ¢’ also disentails (y & U = X);ie, ¢ & ¢ U. (v & U = X) is valid. Clearly, this

is sufficient to show thap & . (¢ & U = X) is satisfiable.

(1) V:s 9 ’; then, according to the thirdoadition of Proposition 7¢ contains either no sort
constraint orX or one of the fornX : s wheres < s. Thus, we se$’ = X : §’, in the first case, for
some sors’ incompatible withs; i.e., such thas s "/ = . In the second case, we choase’ such
thatss " = ands " s .

2Q)V=X& V=Y ¢ /;then, eitheN:s ¢ ’and we are in Case (2), or, according to the last
condition of Proposition 7, at most oneXfandY is sorted ing. If Y:s ¢, wesetp ' = X: & for

June 1991 (Revised, November 1992) Digital PRL

Functions as Passive Constraints in LIFE 33

some sors such thais s / = . If none of X andY is sorted ing, we set¢ ' =Y :s& X:¢d for
some sorts, s suchthas s ' =.

B) V.l =V, > then, ¢ contains no feature constraiité; = _, according to the fourth
condition of Proposition 7. Without loss of generality, we can assumehdbes not contain
redundant conjunct? There exists a sors such thaty contains a conjunct of the form:
Vi =V, & Viip = Vo & ... & Vao1.8nh =V & V, @ s, for somen 1. Thus, we set
¢ =Xl =X & X lp = X& ... & Xo_1.8h = Xy & Xy @ &, for some new variableXy, . . ., X,
and some so suchthas s ' =. 1

Theorem 3 (Entailment) Let ¢’ be a normal form ofy relatively to¢. Then, ¢ entails
JU. (¢ & U = X) if and only if¢’ is a functional binding. Moreover & %’ is a solved
OSF-constraint.

Proof: If ¢’ is a conjunction of equations representing a functional binding, then ’ is valid;
thus, so isp U. ¢ . By invariance of relative simplification (Corollary 1), it follows that
¢ . isvalid, too.

If ¥ has a different form then, eithe¥ = , or¢ '’ contains conjuncts that are not a functional
binding. The fact tha$. ¢ is not valid is trivial in the first case. In the other case, since the
contextg is always assumed in solved form and, thus, satisfiable, then it follows from Proposition 9.

Corollary 3 Let’ be the relative-simplification normal form ¢f& U = X relatively tog.
Then, the context entails the guard if and only if the conjunatién«’ is the solved-form of
the conjunctionp & ¥ & U = X.

Proof: This is an immediate consequence of Theorem 3 and Proposition 8.]

4.3 Independence

The following theorem states that the OSF-constraint system has the independence prop-
erty [19]. It is well-known that in any constraint system with this property it is possible

to solve constraints which are conjunctions of constraints and negated constraints by testing
entailment. Namelyy & -3l & ... —~3Uty IS satisfiable if and only i does not entail

Ji4. ¢, for everyi = 1,...,n. Heredl4, abbreviates the existential quantification of variables

in Var(;) — Var(¢).

Clearly, ¢ entails 34. v if and only if ¢ entails 3043U;. ¥i[Ui/X] & U; = X, where
we introduce a new variablg; for every X; € Var(¢) N Var(¢i). Hence, given that the

12That is, we assume that every variablapitnas at least one sort constraint and that redundant constraints in
are removed. A redundant constraintfris one of the formX.£ =Y & Y : T whereY does not occur elsewhere
in %. Since we interpret features as total functions, this is not a proper restriction: redundant constraints can be
moved into the functional expression or the body of the guarded clause without changing the declarative or the
operational semantics. On the other hand, if this assumption is fulfilled, then the entailnge&t of = X by ¢
does not depend on whether features are interpreted as total or partial functions.

Research Report No. 13 June 1991 (Revised, November 1992)

34 Hassan Ait-Kaci and Andreas Podelski

independence property holds, we can use the relative-simplification algorithm in order to
check satisfiability of conjunctions of positive and negative OSF-constraints.

For the formulation of the theorem, let us make a few assumptions that do not incur any
loss of generality. First, we assume thét= Var(¢i), Ui € Ui, andVar(¢) N Var(y;) = 0.
Second, since they correspond to different existential quantification scopes, we will assume
U Nl = 0fori#j. Finally, we again assume that does not contain redundant constraints
(cf., Footnote 12 on Page 33).

Theorem 4 (Independence) A constraint ¢ entails the disjunction of the constraints
. (¢ & Ui = X), fori = 1,...,k, if and only if it entails one of them.

Proof: The if-direction is trivial. It is sufficient to show that if & i (i & Up = X)is
satisfiable for every, theng & Ai_; i. (¥i & Uj = X) is satisfiable.

Extending the proof technique of Proposition 9, we will find a constrainsuch that¢ & ¢’
is satisfiable and disentailgf, for alli = 1,...,k. As a consequencej & ¢’ also disentails

i. (¥i & Ui = X). Thatis,¢ & ¢’ i. (¥i & Uj = X) is valid. Clearly, this shows that
$& Ay« i. ¥i & Ui = Xiis satisfiable.

According to Theorem 3, i$ & i. (¥i & Uj = X)) is satisfiable, therp{, the normal form of
¥ & U;j = X relatively tog is not a conjunction of equations representing a functional binding.

Thus, one of the three following cases is true, for sdfmevar(y {) bound to someX; Var(¢);
ie,Vi=X ¢ [

[(1)] ¢ { contains a sort constraint &f; say,V, : s; or,

[(2)] ¥ { contains two equations o; say,V, = X & Vi = Y;; or,

[(3)] ¥ { contains a feature constraint ®n say,Vi.4 = W.

(1) IfVi:s 9 |, theng contains either no sort constraint #nor one of the formX; : § where
S < g, according to the thirdandition of Proposition 7. LeUij = X, fori; = 1,...,m, be the
family of all equations occurring in the disjuncts binding a local variamgeto that same global
variableX;. We add top the sort constrainX; : §" wheres’ is some sort which is incompatible with

those in the sort constrainth, : s;, and, in cas& : § ¢, is furthermore a subsortsf{, 5" s .

@QIEVi=X&Vi=Y ¢ {,andV,:s ¢ | (otherwise we are in Case (2)), then we ad¢'tthe
conjunctsXi.4y =7 & Z, s& Y .4 =2 & Z| s '. Heresands are two incompatible sorts, and
the’s are pairwise different features which do not occugiand+;, fori = 1,...,k.

(3) Finally, we consider the sebf all indicesi, i = 1,.. ., k, for which Case (3), but neither Case (1)
nor Case (2) applies. Thus, for I, ¢ | contains a feature constraint of the fovng = V2.
According to our assumption this constraint is not a redundant conjuactthere exists a sor;
such thatp; contains, in fact, a conjunct of the form:

Vil =VI& VP =V2E& .. &V =V &V s,
for somen 1. We add top ' the conjunct:

X=Xt exte=xte ... &axXtn=xexX: o,

June 1991 (Revised, November 1992) Digital PRL

Functions as Passive Constraints in LIFE 35

for some new variablex}, . .., X" and for some soi incompatible withs.
If there are several disjunctﬁ;’j with exactly the same chain of feature constraints starting in a

variable bound to the same global variable, t§emust be chosen to be incompatible with the sorts
in all of these chains. More precisely, if, fpr=1,...,m, the disjunc‘api’j contains the conjunct:

Vi i = vi} & vi}.eizﬁ vi? & ... & vi?—l.ei” =Vi& Vs,

. ;L o
thens is chosen as some sortsuch thass { = foralli j,ij=1,...,m. |

5 A general residuation framework

Constraint Logic Programming (CLP) [18], the guarded Horn-clause scheme of Maher
(ALPS) [20], Concurrent Constraint Programming (CCP) [23], and Kernel Andorra Prolog [15]
(KAP) are recent logic programming frameworks that exploit the separation of relational
resolution and constraint solving. They do so to a full extent by being parameterized with
respect to an abstract class of constraint systems. In addition, ALPS, CCP, and KAP require
a test for entailment and disentailment between constraints. This is needed for advanced
control mechanisms such as delaying, coroutining, synchronization, committed choice, and
deep constraint propagation. LIFE [6] is a CLP language using a constraint system based on
order-sorted feature structures augmented with effective functional dependencies. Evaluating
functional dependencies involves constraint entailment/disentailment since passing arguments
to functions is done bynatchingas opposed to unification. Thus, LIFE employs a related, but
limited, suspension strategy to enforce deterministic functional application.

In this work, extending the guarded Horn-clause scheme of Maher [20], we present an
operational and denotational semantics of the gemesaduation schemased, in a particular
way, in LIFE.

The technigue of residuation—delaying reduction and enforcing determinism by allowing only

equivalence reductions—does not have to be limited to functions. Therefore, we explain it for
the general case of relations. Intuitively, the arguments of a relation which are constrained by
the guard are its input parameters and correspond to the arguments of a function.

Our scheme defines the denotational and operational meaniggaofied Horn-clausesas
formulated by Maher, using logical formulae caltathrded rules More precisely, a collection

of n guarded Horn-clauses turns out to be syntactic sugar for the conjunctich bfuarded
rules. The quantification of the local variables (of the guard and the rule body) and their
binding to global variables (of the context) turns out to be crucial for this formaldm (
Section 5.1).

We introduce acompatibility conditiorfor guarded rules relaxing the requirement of Maher
that the guards of one relation should be mutually exclusive. While this requirement is not
part of the general ALPS scheme, it is essential for its completeness results. The compatibility
condition is shown to beeatessary and sufficient for the existence of a model of guarded
Horn-clauses;i.e., of the corresponding conjunction of guarded rules defining a relation.

Research Report No. 13 June 1991 (Revised, November 1992)

36 Hassan Ait-Kaci and Andreas Podelski

Since adding guarded rules promotes determinate reduction, the possibility of doing so with
possibly overlapping guards is important for efficiency. For exampleatitgpredicate on
three Boolean arguments can be specified witguarded rules, instead of just two.

In contrast with our semantics, the scheme of Maher gaasdedHorn-clauses as defining a
relationr by considering them as simple Horn-clauses, by ignoring the operational meaning

of the guard. This amounts to using Clark’s completion, yieldingfnite equivalencg.0].

In the scheme of Smolka [24], a relations first defined by a definite equivalence defining

the semantics of this relation, and only then guarded rules are added, helping to enforce
deterministic derivations. Our improvement here is that one can define a predicate solely by
ALPS guarded Horn clausebd, the corresponding guarded rules). Also, our guarded-rule
reduction scheme extends the one of Smolka. Namely, it avoids useless redundancies in
the syntactic formulation of guarded rules, as well as in the operational semantics as will be
explained next?

In every guarded-clause language, a resolution step produces a new environment; namely, the
conjunction of the old environment, which is the constraint part of the resolvent (the context),
and the guard. This conjunction affects the variables in the badyif LIFE, the right-hand

side expression of a function definition) after successfully executing the corresponding guard;
i.e., it “constrains” them in a semantical sense.

For example, if (in the Herbrand constraint systéa) f(a) is the context anf = f(X) is the
guard andZ = X is the body, therX is constrained to be equal o Practically, the matching
proof is done by unification which yields thestantiationof the body variableX, X = a. In
order to compute the new environment, this unification is, of course, not repeated.

The example above can be generalized to constraint systems where the proof of the en-
tailment/disentailment of the guard can be done by a new operational method that we call
incrementatelative simplificatiorof the guard with respect to the context. In this method, the
proof of entailment has as a consequence (somewhat like a side-effect) that the conjunction
of the context and the guard is in solved form, as if normalized by the constraint solver. For
example, relative simplification of the guard= f(X) relatively to the context = f(a) yields

the constrainX = a. Hence, we say that an occurrence of the variabile the body is then
instantiated

In contrast with Maher’s and Smolka’s, our scheme captures the practically relevant case where
the variables in the body are already instantiated (in the operational sense above) through the
corresponding guard’s entailment proof. In particular, as made explicitin Section 4 this applies
to the order-sorted feature (OSF) constraint system used in LIFE. So, one thing our scheme
brings out formally is the justification and accommodation of the implementer’s natural idea
that repeated constraint-solving work should be avoided.

Independently of its benefits when used in a guarded language, relative simplification is
an implementation strategy for entailment/disentailment proofs. As such, it formalizes and

Bwe mean “useless redundancy,” not as a pleonasm, but as a deliberatétiopgosuseful relundancy”
serving a pragmatic purposef;, Footnote 17.

June 1991 (Revised, November 1992) Digital PRL

Functions as Passive Constraints in LIFE 37

justifies the standard approach of proving matching by doing unification and checking the
bindings. Furthermore, it is operationally more powerful since it is incremené&l;no
redundant work is done. For example, the test of matching through unificationtis
incremental; bindings of global variables are effected for each test and have to be undone
afterwards.

This section is organized as follows. In Section 5.1, we present our formulation of guarded
Horn-clauses and guarded rules and establish their operational and denotational semantics.
In Section 5.2, we briefly consider incremental relative-simplification systems in general.
We exhibit some properties which indicate how they might be constructed from a unification
system, or more generally, from a constraint solver. In Section 5.3, we put the results of the two
previous sections together, to derive the operational semantics of residuation. In Section 6, we
show the use of the general scheme on the specific instance of LIFE’s functional applications.

5.1 Guarded Horn-clauses and guarded rules

We assume a ranked alphafieof relational symbols. A relational atom is an expression of
the formr(Xg, ..., Xn) wheree R and theX;’s are mutually distinct variables.

Also, we assume a class of logical formulae (called constraints, @otgd. . ., closedunder
conjunction and including thialse constantl) and a model or a class of models (possibly
specified by axioms), to which satisfiability and validity will refer in the following.

A guarded Horn-clausés of the formH :- G |] B., whereH, the head, is a relational atom;
G, the guard, is a constraint formula; arig,the body, is of the fornR & ¢, whereR, the
relational part, is a (possibly empty) conjunction of relational atoms,dgnithe constraint
part, is a (possiblyrue) constraint formula. In the case of constraint systems with a relative
simplification system, the guad can be a conjunction of positive and negated constraints.
We first consider the case whegds a conjunction of positive constraints.

Here is an example of a guarded Horn-clause defining deterministic list concatenation:

concatX,Y,Z):- X:nil | Y=2Z
concafX,Y,Z) :- X:cons& X.hd=H& Xtl =T
Z:cons& Zhd=H & Z.tl =L & concafT,Y,L).

Since any constraint system can be trivially augmented to express tplesmay assume

the relational symbot in the head to be a unary predicate. This amounts to replacing
r(Us,...,Uy) :- G[Bwith r(U) :- U = (Uy,...,Uy) & G| B. Here, the constraint

with tuple notationd = (U, ..., Uy) is just a shorthand for the specific constraint encoding
multiple arguments in the system being considered. For instance, in our OSF-constraint
systemU = (U4, ...,Up) standsfod.1 =U; & ... & U.n=U,,.

14Although doing so may increase significantly its expressive power, this is not important in the context of this
presentation. Indeed, our considering only unary relations is not properly restrictive, but essentially a notational
convenience.

Research Report No. 13 June 1991 (Revised, November 1992)

38 Hassan Ait-Kaci and Andreas Podelski

A guarded rules a logical sentence of the form:
YUVU. (G — (I’(U) « JV. B))

It is important to note that the existential quantificati#t¥ of the variables local to the body
maynotbe pulled outj.e., the guarded rule may not be writtéf) (G — (r(U) < B)).

Let H = r(U) wherer € R andU is a variable. Let/ = Var(G) — {U} andV =
Var(B) — (U U {U}). Then, the guarded Horn-claue:- G | B corresponds to the above
guarded rule!®

For example, the guarded rules corresponding to our foregoing definitonotare:

YUYX. ((U.1=X& X:nil) —
(concafU) « 3{Y,Z}. (U2=Y&U3I=Z&Y=2))).

YUV{X,H,T}. ((U.1=X& X:cons& X.hd=H & Xt =T) —
(concafU) « 3{Y,Z,L}.(U3=Z& Z:cons& Zhd=H & Ztl =L &
U.2=Y & concafT,Y,L)))).

In the first rule, the variabl¥ does not occur in the rule’s body; thus, we can write it:

VU. (3X. (U.1=X& X:nil) —
(concafU) « 3{Y,Z}. (U2=Y&U3=Z2&Y=2))).

In the second rule, the scope of the varialtleand T extends over the guard and the body.

A (constrained) resolverR is a (possibly existentially quantified) formula of the foR& ¢,
whereR consists of a (possibly empty) conjunction of relational atoms,d@rits context, is

a (possiblytrue) constraint formula. In the following, we will consider only the derivation of
resolvents without quantification. Indeed, only the matrix of a quantified resolvent is rewritten
(adding possibly more quantifications).

We will call the variables invar(R) global and denote them generically AsY, Z, etc. The
variables in a rule are callddcal. Except for the case of explicit examplesd, concaj,

local variables are generically nam¥egV, W, etc. The variables that are local to the body

are within a quantification scope contained in that of those variables that are also in the guard.
Local and global variables will always be assumed distinct, by implicit renaming if necessary,
S0 as to avoid capture.

Bt is interesting at this point to observe that our formulation of guarded rules is different from Smolka’s [24]
where the guarded rule above isitten in the form:

VU. (FU.G — (r(U) & Fu3v.(G&B))).

We will compare our formulation to Smolka’s in more detail in Section 5.3.

June 1991 (Revised, November 1992) Digital PRL

Functions as Passive Constraints in LIFE 39

The next proposition characterizes tleeluctionof a resolvent by application of a guarded
rule into an equivalent resolvent.

Proposition 10 Given the guarded rule:

YUYU. (G — (r(VU) « FV.B)),

the resolvenR = R & r(X) & ¢ is equivalent to the derived resolvent:
JUIIV. (R& B& ¢ & G& U = X),

if the contexip of the resolvent entails the guard of the rule; i.e., if:

¢ — IUIU. (G& U =X)

is valid.

Proof: The entailment condition says that the contéxs equivalent to its conjunction with the
instantiated guard,

¢ $&U. (G&U = X)
U.(4& G&U = X).

The resolvenR = R& r(X) & ¢ is equivalent to:
U.(R&r(U)& ¢ & G& U = X).

Since the variable) and the variables irare universally quantified, the guarded rule can be written
as:

(rU)& G) .(B&G).
It follows thatR is equivalent to:

U.(R& $&B&G&U = X). 1

After the application of a rule, local variables become variables of the derived resolvent and
are, then (and only then), considered global.

Let us assume that the constragnentails the guards. Then, althoughy is equivalent to
JU3U. (¢ & G & U = X), the conjunctioB & ¢ is generallynotequivalent to the quantified
formuladu3l. (B & ¢ & G & U = X). Namely, the guard> generally shares variables

Research Report No. 13 June 1991 (Revised, November 1992)

40 Hassan Ait-Kaci and Andreas Podelski

with the bodyB of the guarded rule. Roughly, the conjunctigi®& G & U = X provides the
instantiation of input parameters used in the bBayf the guarded rulé®

We now consider the case of a guarded Horn-clause where the guard consists of a conjunction
of positive and negated constraints.

For example, the guarded Horn-clause:
concatX,V,Z) :- «(X:cong | X:nil & Y=2Z
corresponds to thguarded rule

YU. (-3X. (U.1=X& X:cong —
(concafU) « 3{Y,Z}. (X:nil&U2=Y&U3I=Z&Y=2))).

Generally, the guarded Horn-claude: - G & Aj_; G | B. corresponds to the guarded
rule:

VUV (G& A -3U.G — (r(U) « 3v.B)). (1)
j=1,..,k

We will always assume that the séts = Var(G;) — {U} are pairwise disjoint, as well as
disjoint from#/ and from.

Proposition 11 Given the guarded rule (1), the resolvéddt= R & r(X) & ¢ is equivalent
to the resolvent:

JUIIV. (R& B& ¢ & G& U = X),

if the contexip of the resolvent entails the guard of the rule; i.e., if the implication:
¢ — IUIU. (G& U =X)

is valid and the conjunctions:

$& G & U =X

forj = 1,...,k are unsatisfiable.

8All conjuncts in the guard which dootshare variables with the body of the guarded rule being applied, may
be omitted in the derived resolvent.

June 1991 (Revised, November 1992) Digital PRL

Functions as Passive Constraints in LIFE 41

Proof: The proof of Proposition 10 can be rephrased by replaGingth the new guard. Under the

entailment assumption, the contexts equivalent tap & i- (Gj & U = X), and sinc&5; does
not share variables witB, B & ¢ is equivalent td & ¢ & i- (G & U = X). This means that
the conjuncts . (G; & U = X) can be omitted from the derived resolvent. |

The collection of the guarded Horn-clausgd)) :- G | Bj with the same head in a
given program stands for the conjunction of the following- 1 guarded rules, where
U, = Var(G;) — {U} andV; = Var(B;) — (¢4 U {U}) fori=1,...,n:

VUVUi. (Gi — (I’(U) — E|Vi. B;)),

fori=1,...,n and:

YU. (—ElUlGl& o & —EIL{nGn — (r(U) «— L))

We assume the guar@; to be of the general form, as in the guarded rule (1). In our examples,
then+ 1stguarded rule (the “otherwise” rule) is always left implicit.

Whenever they are consistent, the- 1 guarded rules above define the predicateThis

follows from the next fact.

Proposition 12 The following formula is a logical consequence of the guarded rules which
stand for the guarded Horn-clause@dlt) :- G; [B, (i=1,...,n):

YU. (I’(U) > \/ U3V (G & By)) (2)

i=1,..,n

Proof: The proof for the-part of the formula is clear. For theart we consider the two cases
whether or not(U), and therefore(U) , holds in an interpretation. In the first case, there

is nothing to show. In the second case, we usenthelst guarded rule, the “otherwise” rule, by
contraposition.]

It is important to observe that this is in contrast with [24], where, conversely, Formula (2) is
called adefinite equivalencand the guarded rules must be its logical consequences.

Not every conjunction of guarded rules has a model. In fact, in order to be a model an
interpretation must satisfy the followircpmpatibility condition

/n\ (vuvuivu,-. (Gi&G — (V.B o av,-.B,-))). @3)
i,j=1

This condition is trivially fulfilled if the guards are mutually exclusive.

Research Report No. 13 June 1991 (Revised, November 1992)

42 Hassan Ait-Kaci and Andreas Podelski

Proposition 13 Every model of the definite equivalence (2) and the compatibility condition (3)
is a model of the conjunction of thetll guarded rules of the form (1), and vice versa.

Proof: By (2),Gi & . B impliesr(U). If G; & r(U) holds in an interpretation, then, by (2), there
exists somg such thaiG; & ;. B; holds. Butthen, by (3), i. B holds also. Th& + 1stguarded

rule is an immediate consequence of (2). The other direction follows from Proposition 12 for (2) and
from combining the guarded rules pairwise for (3).]

We call a model of a guarded Horn-clause program a model of the conjunctions of guarded
rules which stand for the collections of guarded Horn-clauses with the same head in the
program.

Corollary 4 If the compatibility condition is valid, then a guarded Horn-clause program has
a least model.

Proof: It is a well-known fact that a system of predicate definitions such as (2) has a least model
extending the model of the theory of the constraint domefin[(L8, 17]). The statement then follows
from the assumption and Proposition 13.]

For the sake of completely relating our approach to others, let us mention one idea which is
not (yet) implemented in LIFE. Given a program consisting of definite clauses, one can add
explicit guarded rules which are logical consequences of the program [24]. Now, assume a
relationr declared by the definite clausgX) <« 3JU;. ¢i & R, i = 1,...,k. Thus, the
completed form of is:

k
r(X) < \/ (E|Ui.¢i& R|)
i=1

Then, the following guarded rules are always immediate consequences of this definition:

—-3U1. 1 & ... & 7FUj_1. i1 &
~Uis1- Gie1 & ... & AUk . — (1(X) « UL R & ¢i)

fori = 1,...,k These guarded rules can be left implicit. Although semantically redundant,
these additions are of great pragmatic use for efficient reductions. In fact, adding them is
paramount to enabling the immediate reduction of a determinateigoaine whose definition
offers only one alternative in its conteit.This appears to be related to what has been quoted
to us as the “Andorra Principle” [15], a strategy of preferentially selecting goals which have
at most one alternative, and is a basic principle underlying the Andorra Model [22].

YThis is an example of a useful redundandy; Footnote 13.

June 1991 (Revised, November 1992) Digital PRL

Functions as Passive Constraints in LIFE 43

5.2 Incremental relative-simplification systems

If G is a guard of the general form, as in the guarded rule (1), gamnglthe context of a
given resolvent, then we say that the context entails the guard if the validity condition and the
unsatisfiability conditions in Proposition 11 are fulfilled. We say that the context disentails the
guard if the implicationp — -3U3U. (G & U = X) is valid, or if one of the implications

¢ — 3UIY. (G & U = X) is valid, forj = 1,...,k. Again, disentailment is not the
negation of entailment;e., the two problems are not dual to each other. Thus, a guarded rule
system needs to carry out two different tests.

If the contextg of a resolvenR entails the guard, then the context of any resolvent derived
from R entails the guard, too. In other words, a context can only become stronger in each
derivation stepi.e., constraints are added as conjuncts. The same holds for disentailment.

If the context¢ neither entails nor disentails the guard, there might still be a derivati®Re of
whose context entails, or disentails, the guard. This is why incrementality is important. In
the case where both tests fail, for the contéxdf the current resolveri, the proof which

has determined this will be continued by the proof for the strengthened cahtexd’ of a
resolventR’ derived fromR, instead of starting from scratch. That is, the proof of the guard
“stalls” in the context oR; the proof of the guard in the context Bf “resumes” it.

The following observation is useful for deriving an entailment test from a constraint normal-
ization system.

Proposition 14 The contex$ entails the guard G if and only if the conjunctigr& (G & U =
X) is equivalent tgp & G’ for some formula Gsuch that Gis valid.

Proof: If G’ isvalid,theny G 'isalso valid. Thereforep is equivalentta & G'. According to
the assumptiornp & (G& U=X) ¢ & G ’isvalid. Thusg is equivalenttap & (G & U = X).

This shows thap U(G & U = X) is valid. For the other direction, it is sufficient to choose
G = ((G&U=X) ¢). Clearly, thenp & (G & U = X) is equivalent tap & G', and alsaG'
is valid. |

The ‘only if’ direction in this proposition is crucial for practical purposes. GigandG, the
formulaG’ has to be effectively found, and its validity has to be effectively determined.

In what follows, ¢ and ¢ are two constraints wherg is a context formula assumed be
consistent such th&ar(y) N Var(¢) = 0.

Corollary 5 If the guard consists of a positive constraint, saythen the context entails the
guard,i.e.¢p — JUIU. (¢ & U = X)isvalid, if and only if the conjunctiofn & 3 & U = X
is equivalent tap & ' for some formula)’ such thaBU3i4. ¢’ is valid.

Proof: The proofis a straightforward rephrasing of the previous proof.]

Research Report No. 13 June 1991 (Revised, November 1992)

44 Hassan Ait-Kaci and Andreas Podelski

The corollary gives the idea about how one generally intends to obtain the fo@hiriam
Proposition 14. Namely, by applying a suitable constraint normalization system on the
conjunctg & ¥ & U = X successively, as long as this is possible, without modifying
Clearly, the main difficulty is completeness; that is, whether under entailment, one can actually
derive a constraint & v’ such thaBU3/. ¢’ is valid.

Corollary 6 The contex disentails the guard, i.e.,¢ — —-3UIU. (¢ & U = X) is valid
ifand only if¢ & ¥ & U = X is equivalentt@ & 1.

Proof: We only need to note that if:
$&U.(yp & U =X) ¢& .

is valid, then also:
$&U.(¢p & U =X) ¢& roal. |

Again, it is clear how one may try to obtain the disentailment proof. Namely, by applying
the constraint solver on the conjure® ¢ & U = X successively, as long as this is possible
without modifying¢, or until one arrives ap & 1. Again, the difficulty is completeness.
That is, whether under disentailment, one can actually deriirethis way.

Definition 8 We call arelative-simplificationsystem a reduction system which, given the
context-constraing and the guard-constraint and the binding U= X of the variable U in

1 to the variable X inp, reducesp & U = X to a constraint)’ with V = Var(y') — Var(¢)
such that:

e JV.¢'isvalid if and only ifg entailsy; i.e.,¢ — JUIU. (¢ & U = X) is valid,;
e ¢/ = L ifand only if¢ disentailsy;i.e.,¢ — -3JUIU. (¢ & U = X) is valid.

Moreover, at each intermediate simplification step deriving a constrgfnwith V =
Var(y') — Var(¢) the followingrelative-simplification invariartolds:

e ¢ & JU. (¢ & U = X)is equivalenttap & V. '

Proposition 15 (Confluence of Relative Simplification) Any relative-simplification system
can be transformed into an incremental one simply by closing the simplification relation with
respect to the following condition. 4 simplifies to’ relatively tog, and simplifies toy”
relatively to¢ & ¢', then also:

e ¢ simplifies toy’ relatively tog & ¢’, and

June 1991 (Revised, November 1992) Digital PRL

Functions as Passive Constraints in LIFE 45

e ¢/ simplifies toy)” relatively tog & ¢'.

The statement says that any relative-simplification system can be assumed to be already
incremental.

Proof: The relative-simplification invariant still holds if one considers every simplification relatively
to ¢ also a simplification relatively tg & ¢'. Namely, if¢ (v o "} is valid, then so is

p&¢" (¥ ¥) |

Generally, it is not evident how to transform the specification of a non-incremental relative-
simplification systemd.g, by rewrite-rules) into an incremental one.q, by adding or
modifying the rules). Our experience is limited to cases (essentially to the constraint systems
over finite or rational first-order [11, 13] or feature trees [7, 25]) where incrementality came
for free.

5.3 Operational semantics of residuation

We assume a constraint system with an incremental relative-simplification system as described
in the previous section. Let the relatiobe specified by guarded Horn-clauses, each of the
formr(U) :- G | B, corresponding ta+ 1 guarded rules, each of the form (1). Let the guard

G be of the form:

G =& N -3¢

j:ly"'yk

Let us consider the hypothetical reduction of the resoNRnt R & r(X) & ¢ to the new
resolvent:

R = UIV. (R&$&B& Y& N -3U. ¢,
j=1,...,k

where the constraintg & U = X simplify to ¢ relatively to the contexp, with Var(y;) = U4
andVar(+) — Var(¢) = U4 forj = 0,1,...,k.

Proposition 16 (Correctness of reduction) The reduction step from the resolvddito the
resolventR’ is always a correct reduction stepR’ impliesR; i.e., all solutions ofR’ are
solutions ofR.

Proof: This follows from Proposition 12 and the relative-simplification invariant.]

The reduction step from the resolvdito the resolvenR’ is also a complete reduction step:
(with Proposition 16R is equivalent td?’. Equivalently,

Research Report No. 13 June 1991 (Revised, November 1992)

46 Hassan Ait-Kaci and Andreas Podelski

Proposition 17 (Completeness of reduction) The solutions oR’ are exactlythe solutions
of R, if:

e dU. vy is valid, and,

o 1/;j’ = 1,foreachj=1,...,k
Then,R’ is equivalentto R ¢ & 1 & B.
Proof: This follows from Proposition 11 and the relative-simplification invariant.]

In the case of relative-simplification systems based on constraint sobzgrdrplementing
unification), ¢ & % is already essentially the solved form ¢f& . This is the case for
OSF-constraintscf., Section 4). That is, our scheme captures the practically important case
when the conjunction of the context and the guard has already been solved through the guard
proof.

For comparison, let us consider the guarded-rule reduction defined by Smolka in [24]. There,
the “commit condition” is that the conjunction of the contéxand the negated guard) be a
constraint that simplifies ta, the inconsistent constraint. Under this condition, the resolvent

¢ & r(x) & Rreduces top” & R & Rif the (renamed) guarded rule — (r(X) < ¢' & R)

is used, and the constraigt& ¢’ simplifies tog”.

A consequence of this on the syntactic formulation of guarded rules is that, in Smolka’s
scheme, the part of the guard which constrains variables in the body must be repeated in the
constrainip’ in the body of the guarded rule. That is, the guarded rule:

YUYU. (G — (I’(U) «— HV.B))
must be written in the form:
YU. (FU.G — (r(U) « FUIV.(G&B))).

As a result, in Smolka’s operational semantics of guarded-rule reduction is that the simplifi-
cation of the constraint & ¢’ does more work than is necessary after relative simplification.
Namely, it must repeat the simplification of the conjunction of the context and the guard.

Thus, for constraint systems with relative simplification, our formulation has an advantage
in efficiency, although it is semantically equivalent to Smolka’s. In our scheme, it is only
necessary to normalize the constraintsBinbut not those inG, in conjunction with the
resolvent’s context in the case where that guarded rule is applied.

The next proposition considers the case of disentailment. Here, of course, no instantiation
is effectuated. It states that the reduction step from resoRentthe resolvenR’ can be
excluded wheneveR’ is equivalent talL. Equivalently,

June 1991 (Revised, November 1992) Digital PRL

Functions as Passive Constraints in LIFE 47

Proposition 18 (Failure of reduction) The set of solutions &’ is empty;, if:

e), = L,o0r

o auj'. 1/;j’ is valid, for at least one of + 1, ..., k.
Proof: This follows from Proposition 12 and Definition 8.]

The foregoing propositions might suggest several possibilities for fine details of the operational
semantics concerning resolvents with residuatioas;relational atoms(X) for which none

of the guards of tha + 1 guarded rules for is entailed. The answer of the query could be
given by the residuated resolveng., with the relational atom(X). Or, in order to make the
answer more refined, it could be given by the disjunction of all resolv@nhtghich are not
equivalent tal .

The constraint part of such a resolveRitcan be further tested for satisfiability. Possibly,

it contains negated constraints. Assuming that the constraint system has the independence
property €f., Theorem 4), such a constraint part can be tested for satisfiability by testing
entailment of each of the negated constraints by th&ipesonstraint.

6 Functional application over v-terms

We now show how the foregoing general residuation scheme can be used to explain functional
application overy-terms. A¢-term is a constrained data structure. Hence, as an expression, it
can be further constrained by being conjoined with other functional and relational constraints.
We will call such an expression eonstrainedy-term For example X : congtl = T :

list) & length(T) = L & L : evenis a constraineg-term specifying lists of odd length.

A constrainedi-term is an expression of the forth & C where is ay-term andC is a
possibly empty conjunction of OSF-constraints and relational atéms.

In LIFE a functionf is defined by:
f(p1) — e
f(Pn) — en.

whereps, ..., pn arey-terms andey, ..., &, are constrained-terms. We assume that the
variables occurring in each rulép;) — g are different. We shall ugé for Var(p;) andV for
Var(e). Again, for ease of notation and without loss of generality, we consider only the case
of unary function symbols.

8The concrete syntax in LIFE for a constraingderm is: < | C. This is read as# such thatC.”

Research Report No. 13 June 1991 (Revised, November 1992)

48 Hassan Ait-Kaci and Andreas Podelski

The above form of function definition is in fact syntactic sugar for a collectiom ghiarded
Horn-clauses of the form:

i1
fi(U,V):- U:pi& A-U:p [V:e.
j=1

fori = 1,...,n;and thus, as seen in the previous section, for a conjunictidrguarded rules.

The symbolf; is a binary relation symbol associatedfto We shall also use the functional
constraint notatiory = f(X) as sugaring for the relational atoifX, Y), and the constraint
Y : f(t) with the functional expressidi{t) as sugaring foBX. X: t & Y = f(X).

We have everything ready now, with the general scheme of residuation of Section 5, to explain
the operational semantics of functional reduction in LIFE as a matter of instance. Indeed, that
scheme is sufficiently general to account for argument matching seen as constraint entailment
and priority of rule order thanks to negative constraints imposing disentailment of previous
patterns.

We make this explicit in the form of the following two propositions. They are immediate
instances of Proposition 11 and Proposition 17, respectively.

Proposition 19 The resolvent& ¢ & Y : f(t) is equivalent to the resolvent:
IXIUTFV.R& p & X:t& Y g & X:p

if the context & X : tdisentails the OSF-constraints2p; forj = 1,...,i — 1, andifitentails
the OSF-constraint Xp;. That is, if the conjunctiong & X : t & X : p; are unsatisfiable for
j=1,...,i— 1, and the implicatio® & X:t — 3. X: pj is valid.

Proposition 20 If, forj = 1,...,i, the OSF-constraint X p; simplifies to the OSF-constraint
Yj relatively tog & X :tsuchthawpy = L, ... ,%i_1 = L, andy; is a functional binding?
then the resolven& ¢ & Y : f(t) is equivalent to the resolvent:

IXTUTV.R& ¢ & X t& Y: 6 & 9.

6.1 Functional application in the 1-term calculus

Next, we express functional application in the framework of the calculus of subsumption and
unification ofe-terms.

We use a fact that follows directly from Proposition 2 and Proposition 3. Namely, the
implicationX : t — JU;. X : p; is valid if and only if they-termt is subsumed by the-term

Recall, from Section 4, that a functional binding is a conjunction of variable equaliti€sX;, i = 1,...,n
where all the variablelg; are mutually distinct.

June 1991 (Revised, November 1992) Digital PRL

Functions as Passive Constraints in LIFE 49

pi. The OSF-constrairX : t & X : p; is unsatisfiable if and only if thg-termt is non-unifiable
with the-termp;.

We will say that the equality = p between twaj-terms is satisfied under a valuatiarin an
interpretationd, ifand only if A, o |= t = piff [] = [p]**; i.e, if the twoe-terms have
the same denotation under

Proposition 21 If the ¢-term t is non-unifiable with the)-terms p,...,pi_1 and if it is
subsumed by the-term p, then the functional expressiofitf is equivalent to the expression
g constrained by & p;. Formally,

Y f(t) « UIV.Y:e&t=p (4)
is valid. If t is non-unifiable with the-terms a, . . ., pn, then {(t) is equivalent taL.

Proof: The statement follows from Proposition 19 and the fact flat X. (X:t& X:p) if
andonlyif,a=t =p.

6.2 Endomorphisms and functional application

We have related functional reduction to the view/eferms as constraints and as sets. In order

to be complete with respect to the three (logical, term-as-set, and algebraic) characterizations
of the information contents af-terms, we now give an algebraic characterization of functional
application as graph pattern-matching. This view generalizes the familiar notion of matching
by computing substitutions.

If a function is defined over first-order terms, say, in the fdifm) = e, then the function
applied to the ternt yields the expressiom(e) if the termt is matched by the pattenn
via the matching substitutios; i.e., f(t) = o(e) if o(t) = p. This is not so obvious for
-terms. Let us take, for example, the identity functionterms, which is defined in
the formf(X : T) = (X : T). When applied to the)-termt = (X : s({ = X :s)), the
function returns the samg-term. However, this does not exhibit a substituttosuch that
o(X:T)=(X:s({=X":9)).

Recall that an approximation orderirig on -terms is induced by the ordering on , the
OSF-graph algebracf,, Section 3.5). An endomorphistnis said to be principal in a set of
endomorphisms if for every endomorphisttin this set, there exists an endomorphigsuch
thaty o p = 4.

We define the application of an endomorphism on a constrajnegtfm of the formy =
1/10 & /\rkn:l(l’k(Yk) & Yk . ’l/)k) by:

m

(@) = (o) & A (re(Yi) & Yic (%))

k=1

Research Report No. 13 June 1991 (Revised, November 1992)

50 Hassan Ait-Kaci and Andreas Podelski

Let f(p) — e define the functiorf, and lett be a-term such thap C t. Let~y be a
principal OSF-endomorphism among all those that pago t. The next proposition states
precisely the following fact: applying the rule means thaj = f(vy(p)) = v(e) = v(f(p)).

In other words, principal OSF-endomorphisms preserve functional applicagofunctional
evaluation and OSF-approximation commute).

Proposition 22 If no y-term is approximated by both t angifor j = 1,...,i — 1, and tis
approximated by ip then the functional expressiofit} reduces to the)-term~y(g), wherey
is a principal endomorphism mappinggn t; i.e.,

f(t) =~v(e), if v(p)=t (5)

If no ¢-term is approximated by both t angfori = 1, ..., n, then the functionap-term f(t)
is .20

Proof: By Proposition 2, we know that the conditions in Proposition 22 on the OSF-graphs are
equivalent to the conditions in Proposition 21 on the correspondibgrms. In particular, this
implies the existence of the principal endomorphigmvith v(p;) = t. From Propositions 3 and 4,
Page 25, we know that : t & X : p; is equivalent toX : y(pi) & ¢ whereg is a functional binding

(of variables ofp; to variables ot). Moreover, the equivalence:

AVerde& Xot&Xop A Yo y(w) & X y(p) & ¢
k=0 k=0

is valid. Now, if g is of the formyg & /\kmzl(rk(Yk) & Ye:yi), thenYp:e & X:t& X:piis
equivalenttoy(Yo : &) & X: y(pi) & ¢. Up to existential quantification of new variables occurring
only in ¢, this formula is equivalent tg(Yo : &) & X : y(pi). Thus, Equation (5) follows from
Proposition 21.]

The proposition above justifies the intuition of functional application ayderms. The
variables of the patterp in the function definition are instantiated by variables of the calling
termt, together with their sorts and their attached subterms, silieicomes syntactically
equal tat; then the variables in the expressigare instantiated accordingly, so tlegbecomes
the expression which rewritéét).

The variables irg which are not shared by the pattginmust not be instantiated; this is the
reason why we require the endomorphism mappjrant to be principal.

For example, let the functioh be defined in the formf(U: T) — U’ : T({=U: T).
Applied to they-termt = X : s(£ = X' :'s), the function returng(t) = U’ : T(£ = (X:
(¢ = X' :'s))). Here, the principal endomorphispmaps(U : T) on(X: s(£ = X' : s)) and
is the identity elsewhere. In particulardoes not unnecessarily refine the sortof

2Note that, in (5), we use the metalogical equal sig), (@s opposed to the logical ong), This means that
in any resolvent we can replace the expression on the one side by the expression on the other side and obtain a
resolvent which is equivalent up to existential quantification of new variables.

June 1991 (Revised, November 1992) Digital PRL

Functions as Passive Constraints in LIFE 51

The endomorphic approximation ordering is very interesting when used on the graph repre-
sentations ot)-terms. It is in fact an immediate generalization of first-order term matching.
More conveniently, if a graph); approximates a graptt, with an endomorphisny, this
approximation is characterized exactly by a mappjgg: Var(y1) — Var(t,) that can be
constructed inductively as follows:

e 7, (Roo{v1)) = Roo(v,);
e for every X; € Var(y1) and for every featurd € F such that{(X;) = Y1, then

Yv(Y1) = £(7,(X1))-

It is clear that this construction is well-defined by the very definition of endomorphic
approximation. In fact, a mapping such-gscan be extended to all variables : V — V; it
can be defined simply from as+,,(Roo{v)) = Roo{~(¢)), forall ¢ in .

For example, provided thaharried person< personsmith < namegmale < gender and
female< genderthen the term:

X : persorflastname= X, : name
spouse= Xs : persorflastname= X,
spouse= X4 : persor),
sex= Xs : gendej

approximates the term:

Y1 : married_persorflastname=- Y, : smith
spouse= Y3 : married persorflastname= Y-,
sex= Y, : female
spouse= Y1),
sex= Y5 : male)

with the endormorphic mapping of variables,,(X1) = Y1, 7,(X2) = Y2, 7,,(X3) = Ya,
7, (Xa) = Y1, andy,,(Xs) = Ys.

As for a matching algorithm, the basic unification rules of Figure 3 are sufficient. Evidently,
if the basic unification yieldd., then this shows disentailment. Otherwise, we will exhibit
conditions on the obtained variable bindings which characterize entailment.

First, observe that after normalizing a consistent OSF-term using Rules (B.1)—(B.5), the
variable equalities left in the solved form generate an equivalence relation on the variables.
We callvariable coreferencéhis equivalence relation.

Given twov-termsy, andi,, to decide whethep, C 3 and, if so, to compute the principal
endomorphic mappingy from Var(«2) to Var(y1) (the “matching substitution”), we peeed
as follows:

ZGiven an OSF-grap#, we use the notatioRoo{y) to designate its root variabl8ort,(X) to designate the
sort of the variableX in ¢, and£,(X) = Y to express the fact that has an arc labeletibetween nodeX andY.
(When no ambiguity may arise, we omit the subscipt

Research Report No. 13 June 1991 (Revised, November 1992)

52 Hassan Ait-Kaci and Andreas Podelski

e [1.] let ¢ be they-term obtained fromj;, by completing it with new variables sorted
with T at any path occurrence gb that isnotin v;

e [2.] let ¢ be the normal form oRoo{v1) = Roo{y») & ¥] & 92;

e [3] if ¢ is not L then lety; (resp.,v2) be the canonical surjection ofar(v)
(resp.Var(w2)) onto the coreference classesgpi.e., the function that maps a variable
to its coreference class.

Then,

Theorem 5 4, C 41 with principal OSF-endomorphismif and only if¢ is not L and~y; is a
sort-preserving bijectioR? Then,y,, = v7 o7, : Var(y,) — Var(41) is the corresponding
endomorphic variable mapping.

Proof: First of all, let us observe that completighg into ¢} with feature occurrences g with new
-sorted variables is an equivalence transformation thanks to totality of features. In othergvords,
andy] are equivalent. Let; = Var(4}) and , = Var(y,). The formulag is of the formy & «
where) consists only of sort and feature constraints antbnsists only of equality constraints.
These variable equalities generate the coreference relationX].@gfiote the coreference classof

If v1 is a sort-preserving bijection, then for every variallef ¢, fyl‘l([X]) is the unigque variable of

11 which is element of this coreference class. Then, we can trangfonto an equivalent formula

¢ by replacing every variabl by y; *([X]) in % and replacing by e’ = Ay y, X = 7,,(X). Note

that this is an equivalence preserving transformation siriseby construction, of the form] & &’

and the coreference relation generated:lande’ are identical. It is important to realize that this
statement would not be true if we had ugigdnstead of)]. Indeed, theng would have been of the
formy, & ¢’ & &’ wherey’ consisted of additional feature constraints corresponding to occurrences
of ¢, missing iny;.

(¥ & €")). This shows that 1. (9]

Clearly, it is true that 1. (¥] 5.

2. (Roo(y1) = Roo(y,) & 9] & 1)) and, thus, 1. (¥] 2. (Roo(#1) =
Root,) & 7)) is valid, and thusp, ¥ 1.
Conversely, ifiy> 9 1, thenalso 1. (9] 2. (Roo(y1) = Roo(y2) & 7)) is valid, and,
thus, also 1. (¥} 2. ¢). But this means thap does not contain equalities binding two
variables ofy); to each other, and thatdoes not contain a sort constraint stronger than the otie in
on the (same or corresponding) variablejef]

Note that the completion of; with occurrences fromj, done in Step 1 is necessary to
determine the bijectiof, and thus the mapping,, with no loss of information. For example,

if ¥1 = f(a,h) andy, = f(X,h(X)), theny, £ 1. However, usingy: instead of the
completedy] = f(a, h(U)) and normalizing does result in a sort-preserving bijection while,
usingy, it does not.

6.3 Semantics of functional application

If a function is defined ovet)-terms, then this means that it can be applied to set-denoting
objects to return set-denoting objects. We will first consider the meaning of pointwise

By sort-preserving, we mealVV € Var(s1), Sorty, (V) = Sorts(v1(V)).

June 1991 (Revised, November 1992) Digital PRL

Functions as Passive Constraints in LIFE 53

functional application given an OSF-algebfaand a valuatiom in A. This extends naturally
to the meaning of functional application on sets, given just an OSF-algkbra

The functionf“* maps elements to elements of the doniathof A. In fact, 4 describes
a partial, namely at mostpoint function:

i—1
fAed) = d if de[p]™** - JIpl* and d € [e]*= for some i.
j=1

The y-termspy, ..., pn are not necessarily disjoint. Instead of using an explicit negation
operator, we give a deterministic meaning to the top-down order in the function definition in
the above way. That is, we define the functfgh for only those valuationa where o]

is disjoint from [p:]#4, ..., [pi_1]#. Implicitly, we make they-termsp; disjoint by giving
them the denotationsp[] > — ([p]# U...U [pi—1]*), fori = 1,...,n. Note that, for two
y-termeps andao, the set [p1]4* is disjoint with [1/2] 4 — [41]*, but generally not with
[¥2]4 — [¥1]*®. For example, takeyy = X : int ands, = Y : real, and define soma
wherea(X) = 3, a(Y) = 4.

The functionf4, i.e,, f interpreted in4d, maps elements (and, by extension, sets) to subsets of
the domairD4,

fA(d) = {d'| Ja € Val(A). fF4>(d) = d'}.

The denotation of théunctional applicatiorof f on they-termt under a valuatiom in the
interpretationA is:

[F(O14 = fAT4).

Thus, A, = Y : f(X : t) if and only if o(X) € [t]** anda(Y) = f48(a(X)) for some
B € Val(A).

The denotation of the functional application fobn the-termt in the interpretationd is

(014 = fAI04).

Example 6.1 We define the identity functioid on-terms by the ruleid(X: T) — X: T.
Then,idA(D) = D for any subseD C DA. If we confuse singletons and their elements,
we may writeid“(d) = d for elementd of the domain ofA. If sis any sort, thenifi(X :
914 = [X: s]# = s*. In fact, the denotation of the functiod applied on anyp-term is
equal to the denotation of thieterm. The denotation under a given valuatiois the value

of the element on which the function is applied|(X : T)] = [X: T]** = {«(X)}.

Example 6.2 We define the functiormny by the rule: anyX : T) — Y : T. The
application of this function on g-term+ yields always the soft, any(¢)) =Y : T = T.

Research Report No. 13 June 1991 (Revised, November 1992)

54 Hassan Ait-Kaci and Andreas Podelski

Note that ny] 4 (a(X)) = a(Y). Thus,any*(D) = D* for any subseD C D*, and
[any(X : 5)]*4> = DA,

Example 6.3 For a fixed sors, we define the functiosorts by the rule:sort(X : s) — X:
T. Now, sortd([X : T]4*) yields {a(X)} if a(X) € s* and§ otherwise. This function
“type-checks” the variablX. Operationally, this means that the function aatts(X) will
residuate untiK is known to be in the sod and then fire; or, until it is known to be out of
the sorts and fails.

What about the interpretation of the syntactic obfeot an OSF-algebrad? The function

f is generally not completely specified in that mme function is singled out in every
interpretationA. Indeed, LIFE calculates with approximations of functions, just as it does
for values of the universe. Thulsdenotes, under each interpretatidnthe set of all partial
functionsy : D* — D# such that, ifp(d) = d, then there exists ad-valuationa such that
fAe(d) = d.

7 Conclusion

The original motivation of this paper was to provide a formal account of the precise manner
in which functional application is used in the resolution scheme of LIFE. This involved doing
three things essentially. Firstly, we have developed a correct and complete operational scheme
for testing entailment and disentailment of order-sorted feature constraints. To that end, we
have introduced a general technique, that we dubbed relative simplification, that amounts
to normalization of a formula in the context of another. Secondly, we have developed a
general residuation framework for guarded Horn-clauses over arbitrary constraint systems
with an incremental relative simplification system. Doing so, we have given a logical reading
of guarded rules as first-order formulae and exhibited operational and semantical properties
of the framework. Lastly, we used this general residuation framework on the particular
instance of functional application over the order-sorted features terms of LIFE. In particular,
we characterized functional application over LIFE’s structures in terms of their logical,
set-theoretic, and algebraic accounts.

As for perspectives, one important issue begs the question. Namely, it would be interesting to
build function denotations into the OSF-models. Indeed, while the framework of this paper

gives a natural meaning to function symbols, it does not consider the latter as a “first-class”
objects—.e. the OSF-interpretations used here are not functionally complete. We plan to

study a means of construction using well-known technigdadDana Scott to extend domains

of OSF-algebras to be functionally complete. That should involve the machinery of classical

Scott-style constructions. Another dimension to that endeavor would be that of seeing all
functions as features of objects. This intriguing perspective could indeed lead to interesting
model constructions.

June 1991 (Revised, November 1992) Digital PRL

Functions as Passive Constraints in LIFE 55

Another avenue for further work on the foundations that we have just cast is the use of the
new discipline for procedure parameter-passing in concurrent systems described as “call-by-
constraint-entailment.” This is along the lines of what has been proposed in [20] and [23], and
realized to some extent in AKL [15]. The novelty that our scheme suggests is the possibility
to derive automatically an effective means to realize this from the operational semantics of
a given constraint-solver. Then, it should peactically possible for concurrent constraint
programming languages to use any constraint system to control suspension and resumption of
execution.

Research Report No. 13 June 1991 (Revised, November 1992)

56

Hassan Ait-Kaci and Andreas Podelski

References

10.

11.

12.

Hassan A-Kaci. An algebraic semantics approach to the effective resolution of type
equationsTheoretical Computer Scienc#5:293—-351 (1986).

Hassan #&-Kaci. Warren's Abstract Machine, A Tutorial ReconstructioMIT Press,
Cambridge, MA (1991).

Hassan A-Kaci and Roger Nasr. LOGIN: A logic programming language with built-in
inheritance.Journal of Logic Programming3:185-215 (1986).

Hassan A-Kaci and Roger Nasr. Integrating logic and functional programmicigp
and Symbolic Computatio@:51-89 (1989).

Hassan #&-Kaci and Andreas Podelski. Towards a meaning of LIFE. In Jan Mahsézy”
and Martin Wirsing, editorsProceedings of the 3rd International Symposium on Pro-
gramming Language Implementation and Logic Programming (Passau, Gernpagygs
255-274. Springer-Verlag, LNCS 528 (August 1991).

Hassan A-Kaci and Andreas Podelski. Towards a meaning of LIFE. PRL Research
Report 11, Digital Equipment Corporation, Paris Research Laboratory, Rueil-Malmaison,
France (1991). (Revised, October 1992; to appear in the Journal of Logic Programming).

. Hassan A-Kaci, Andreas Podelski, and Gert Smolka. A feature-based constraint system

for logic programming with entailment. Proceedings of the 5th International Conference
on Fifth Generation Computer Systenmages 1012-1022, Tokyo, Japan (June 1992).
ICOT. (Full paper to appear in forthcoming special issu€ledoretical Computer Science
on FGCS'92.).

Rolf Backofen and Gert Smolka. A complete and decidable feature theory. DFKI Research
Report RR-30-92, German Research Center for Artificial Intelligence, Sekdm,
Germany (1992).

. Staffan Bonnier and Jan MaluswKi. Towards a clean amalgamation of logic programs

with external procedures. In Robert A. Kowalski and Kenneth A. Bowen, edltotgc
Programming. Proceedings of the 5th International Conference and Sympgsages
311-326, Cambridge, MA (1988). MIT Press.

Keith L. Clark. Negation as failure. In HenGallaire and Jack Minker, editorspgic
and Data Basepages 293-322. Plenum Press, New York, NY (1978).

Alain Colmerauer. Prolog and infinite trees. In Keith Clark and Btem-Tarnlund,
editors,Logic Programmingpages 153-172, New York, NY (1982). Academic Press.

Alain Colmerauer. Prolog II: Manuel deférence et magle ttéorique. Rapport technique,
Universi® de Marseille, Groupe d’Intelligence Artificielle, Famultes Sciences de
Luminy, Marseille, France (March 1982).

June 1991 (Revised, November 1992) Digital PRL

Functions as Passive Constraints in LIFE 57

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Alain Colmerauer. Equations and inequations on finite and infinite treéaoteedings
of the Second International Conference on Fifth Generation Computer Sygiages
85-99, Tokyo, Japan (1984). ICOT.

Bruno Courcelle. Fundamental properties of infinite tréégoretical Computer Science
25:95-169 (1983).

Seif Haridi and Sverker Janson. Kernel Andorra Prolog and its computation model. In
David H. D. Warren and Peter Szeredi, editdusgic Programming, Proceedings of the
7th International Conferenggages 31-46, Cambridge, MA (1990). MIT Press.

Robert Harper, Robin Milner, and Mads Tofte. The definition of standard ML — Version
2. Report LFCS-88-62, University of Edinburgh, Edinburgh, UK (1988).

Markus Hbhfeld and Gert Smolka. Definite relations over constraint languages. LILOG
Report 53, IWBS, IBM Deutschland, Stuttgart, Germany (October 1988). To appear in
the Journal of Logic Programming.

Joxan Jaffar and Jean-Louis Lassez. Constraint logic programmirigyodeedings of
14th Symposium of Principles of Programming Langualyksich (January 1987). ACM.

Jean-Louis Lassez, Michael Maher, and Kimball Mariott. Unification revisited. In Jack
Minker, editor,Foundations of Deductive Databases and Logic Programpuhgpter 15,
pages 587—-625. Morgan-Kaufmann, Los Altos, CA (1988).

Michael Maher. Logic semantics for a class of committed-choice programs. In Jean-Louis
Lassez, editod.ogic Programming, Proceedings of the Fourth International Conference
pages 858-876, Cambridge, MA (1987). MIT Press.

Lee NaishMU-Prolog 3.1db Reference Manualomputer Science Department, Univer-
sity of Melbourne, Melbourne, Australia (May 1984).

Vitor Santos Costa, David H. D. Warren, and Rong Yang. Andorra-I: A parallel Prolog
system that transparently exploits both and- and or-parallelisfAtdceedings of the 3rd
ACM SIGPLAN Conference on Principles and Practice of Parallel Programnuiages
83-93 (August 1991).

Vijay Saraswat and Martin Rinard. Concurrent constraint programmingrolceedings
of the 7th Annual ACM Symposium on Principles of Programming Languagess
232-245. ACM (January 1990).

Gert Smolka. Residuation and guarded rules for constraint logic programming. PRL
Research Report 12, Digital Equipment Corporation, Paris Research Laboratory, Rueil-
Malmaison, France (1991).

Gert Smolka and Ralf Treinen. Records for logic programming. In Krzysztof Apt, editor,
Logic Programming, Proceedings of the Joint International Conference and Symposium
on Logic Programmingpages 240-254, Cambridge, MA (1992). MIT Press.

Research Report No. 13 June 1991 (Revised, November 1992)

PRL Research Reports

The following documents may be ordered by regular mail from:

Librarian — Research Reports
Digital Equipment Corporation
Paris Research Laboratory

85, avenue Victor Hugo

92563 Rueil-Malmaison Cedex
France.

Itis also possible to obtain them by electronic mail. For more information, send a
message whose subject linehiglp to doc-server@prl.dec.com or, from
within Digital, to decprl::doc-server

Research Report 1: Incremental Computation of Planar Maps. Michel Gangnet, Jean-
Claude Hervé, Thierry Pudet, and Jean-Manuel Van Thong. May 1989.

Research Report 2: BigNum: A Portable and Efficient Package for Arbitrary-Precision
Arithmetic. Bernard Serpette, Jean Vuillemin, and Jean-Claude Hervé. May 1989.

Research Report 3: Introduction to Programmable Active Memories. Patrice Bertin, Didier
Roncin, and Jean Vuillemin. June 1989.

Research Report 4: Compiling Pattern Matching by Term Decomposition. Laurence Puel
and Ascander Suarez. January 1990.

Research Report 5: The WAM: A (Real) Tutorial. Hassan Ait-Kaci. January 1990.

Research Report 6: Binary Periodic Synchronizing Sequences. Marcin Skubiszewski. May
1991.

Research Report 7: The Siphon: Managing Distant Replicated Repositories. Francis J.
Prusker and Edward P. Wobber. May 1991.

Research Report 8: Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
A-Calculi. Jean Gallier. May 1991.

Research Report 9: Constructive Logics. Part Il: Linear Logic and Proof Nets. Jean Gallier.
May 1991.

Research Report 10: Pattern Matching in Order-Sorted Languages. Delia Kesner. May
1991.

TThis report is no longer available from PRL. A revised version has now appeared as a book: “Ha$&oi,A”
Warren's Abstract Machine: A Tutorial Reconstruction. MIT Press, Cambridge, MA (1991).”

Research Report 11: Towards a Meaning of LIFE. Hassan Ait-Kaci and Andreas Podelski.
June 1991 (Revised, October 1992).

Research Report 12: Residuation and Guarded Rules for Constraint Logic Programming.
Gert Smolka. June 1991.

Research Report 13: Functions as Passive Constraints in LIFE. Hassan Ait-Kaciand Andreas
Podelski. June 1991 (Revised, November 1992).

Research Report 14: Automatic Motion Planning for Complex Articulated Bodies. Jéréme
Barraquand. June 1991.

Research Report 15: A Hardware Implementation of Pure Esterel. Gérard Berry. July 1991.

Research Report 16: Contribution a la Résolution Numérique des Equations de Laplace et
de la Chaleur. Jean Vuillemin. February 1992.

Research Report 17: Inferring Graphical Constraints with Rockit. Solange Karsenty, James
A. Landay, and Chris Weikart. March 1992.

Research Report 18: Abstract Interpretation by Dynamic Partitioning. Francois Bourdoncle.
March 1992.

Research Report 19: Measuring System Performance with Reprogrammable Hardware.
Mark Shand. August 1992.

Research Report 20: A Feature Constraint System for Logic Programming with Entailment.
Hassan Ait-Kaci, Andreas Podelski, and Gert Smolka. November 1992.

Research Report 21: The Genericity Theorem and the Notion of Parametricity in the Poly-
morphic A-calculus. Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev. December
1992.

Research Report 22: Sémantiques des langages impératifs d’ordre supérieur et interprétation
abstraite. Francgois Bourdoncle. January 1993.

Research Report 23: Dessin a main levée et courbes de Bézier : comparaison des al-
gorithmes de subdivision, modélisation des épaisseurs variables. Thierry Pudet. January
1993.

Research Report 24: Programmable Active Memories: a Performance Assessment. Patrice
Bertin, Didier Roncin, and Jean Vuillemin. March 1993.

Research Report 25: On Circuits and Numbers. Jean Vuillemin. April 1993.

Research Report 26: Numerical Valuation of High Dimensional Multivariate European Secu-
rities. Jérdbme Barraquand. March 1993.

Research Report 27: A Database Interface for Complex Objects. Marcel Holsheimer, Rolf A.
de By, and Hassan Ait-Kaci. March 1993.

Research Report 28: Feature Automata and Sets of Feature Trees. Joachim Niehren and
Andreas Podelski. March 1993.

Research Report 29: Real Time Fitting of Pressure Brushstrokes. Thierry Pudet. March
1993.

Research Report 30: Rollit: An Application Builder. Solange Karsenty and Chris Weikart.
April 1993.

Research Report 31: Label-Selective A-Calculus. Hassan Ait-Kaci and Jacques Garrigue.
May 1993.

Research Report 32: Order-Sorted Feature Theory Unification. Hassan Ait-Kaci, Andreas
Podelski, and Seth Copen Goldstein. May 1993.

dliloli[tlall

PARIS RESEARCH LABORATORY

85, Avenue Victor Hugo
92563 RUEIL MALMAISON CEDEX
FRANCE

el

I4S|3p0d Sealpuy pue 19ed-11y uesseH

34|71 Ul SJURASUOD SAISSE d Se suonoun

