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Abstract

LIFE is an experimental programming language proposing to integrate logic programming,
functional programming, and object-oriented programming. It replaces first-order terms
with  -terms, data structures which allow computing with partial information. These are
approximation structures denoting sets of values. LIFE further enriches the expressiveness of
 -terms with functional dependency constraints. We must explain the meaning and use of
functions in LIFE declaratively as solving partial information constraints. These constraints
do not attempt to generate their solutions but behave as demons filtering out anything else.
In this manner, LIFE functions act as declarative coroutines. We need to show that the -
term’s approximation semantics is congruent with an operational semantics viewing functional
reduction as an effective enforcing of passive constraints.

In this article, we develop a general formal framework for entailment and disentailment of
constraints based on a technique called relative simplification, we study its operational and
semantical properties, and we use it to account for functional application over -terms in
LIFE.

Résumé

LIFE est un langage de programmation exp´erimental proposant d’int´egrer la programmation
logique, la programmation fonctionnelle et la programmation orient´ee-objet. Il remplace les
termes du premier ordre par des -termes, des structures de donn´ees qui permettent le calcul
avec information partielle. Ceux-ci sont des structures d’approximation qui d´enotent des
ensembles de valeurs. LIFE enrichit encore l’expressivit´e des -termes avec des contraintes
de dépendance fonctionnelle. Nous devons expliquer d´eclarativement la signification et
l’utilisation des fonctions en LIFE comme une r´esolution de contraintes avec information
partielle. Une telle contrainte ne tente pas d’´enumérer ses solutions mais se comporte comme
un démon excluant toute valuation qui n’en soit pas. De cette mani`ere, les fonctions de
LIFE jouent le rôle de coroutines d´eclaratives. Il nous faut montrer que la s´emantique
d’approximation du -terme est congrue avec une s´emantique op´erationnelle concevant la
réduction des fonctions comme une application effective de contraintes passives.

Dans cet article, nous pr´esentons un sch´ema général pour tester la cons´equence et la r´efutation
de contraintes bas´e sur une technique appel´ee simplification relative, en ´etudions les propri´etés
opérationnelles et s´emantiques, et l’utilisons pour expliquer l’application fonctionnelle sur les
 -termes dans LIFE.
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Functions as Passive Constraints in LIFE 1

The paradox of culture is that language [...] is too linear,
not comprehensive enough, too slow, too limited, too
constrained, too unnatural, too much a product of its own
evolution, and too artificial. This means that [man] must
constantly keep in mind the limitations language places
upon him.

EDWARD T. HALL , Beyond Culture.

1 Introduction

1.1 The task

LIFE extends the computational paradigm of Logic Programming in two essential ways:

� using a data structure richer than that provided by first-order constructor terms; and,
� allowing interpretable functional expressions asbona fideterms.

The first extension is based on -terms which are attributed partially-ordered sorts denoting
sets of objects [1, 3]. In particular, -terms generalize first-order constructor terms in their
rôle as data structures in that they are endowed with a unification operation denoting type
intersection. This gives an elegant means to incorporate a calculus of multiple inheritance
into symbolic programming. Importantly, the denotation-as-value of constructor terms is
replaced by the denotation-as-approximation of -terms. As a result, the notion of fully
defined element, or ground term, is no longer available. Hence, such familiar tools as variable
substitutions, instantiation, unification,etc., must be reformulated in the new setting [5].

The second extension deals with building into the unification operation a means to reduce
functional expressions using definitions of interpretable symbols over data patterns.1 Our
basic idea is that unification is no longer seen as an atomic operation by the resolution rule.
Indeed, since unification amounts to normalizing a conjunction of equations, and since this
normalization process commutes with resolution, these equations may be left in a normal form
that is not a fully solved form. In particular, if an equation involves a functional expression
whose arguments are not sufficiently instantiated to match adefiniensof the function in
question, it is simply left untouched. Resolution may proceed until the arguments areproven
to match a definition from theaccumulated constraints in the context [4]. This simple idea
turns out invaluable in practice. Here are a few benefits.

� Such non-declarative heresies as theis predicate in Prolog and thefreezemeta-predicate
in some of its extensions [21, 12] are not needed.

� Functional computations are determinate and do not incur the overhead of the search
strategy needed by logic programming.

1Several patterns specifying a same function may possibly have overlapping denotations. Therefore, the order
of the specified patterns defines an implicit priority, as is usual in functional programming using first-order patterns
(e.g., [16]).
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2 Hassan Aı̈t-Kaci and Andreas Podelski

� Higher-order functions are easy to return or pass as arguments since functional variables
can be bound to partially applied functions.

� Functions can be called before the arguments are known, freeing the programmer from
having to know what the data dependencies are.

� It provides a powerful search-space pruning facility by changing “generate-and-test”
search into demon-controlled “test-and-generate” search.

� Communication with the external world is made simple and clean [9].
� More generally, it allows concurrent computation. Synchronization is obtained by

checking entailment [20, 23].

There are two orthogonal dimensions to elucidate regarding the use of functions in LIFE:

� characterizing functions as approximation-driven coroutines; and,
� constructing a higher-order model of LIFE approximation structures.

This present article is concerned only with the first item, and therefore considers the case of
first-order rules defining partial functions over -terms.

1.2 The method

The most direct way to explain the issue is with an example. In LIFE, one can define functions
as usual; say:

fact(0) ! 1:
fact(N : int)! N � fact(N� 1):

More interesting is the possibility to compute with partial information. For example:

minus(negint)! posint:
minus(posint)! negint:
minus(zero) ! zero:

Let us assume that the symbolsint, posint, negint, andzerohave been defined as sorts with
the approximation ordering such thatposint; zero; negintare pairwise incompatible subsorts
of the sortint (i.e., posint^ zero= ?; negint^ zero= ?; posint^ negint= ?). This is
declared in LIFE asint := fposint; zero; negintg. Furthermore, we assume the sort definition
posint := fposodd; poseveng; i.e., posoddandposevenare subsorts ofposintand mutually
incompatible.

The LIFE queryY = minus(X : poseven)? will return Y = negint. The sortposevenof the
actual parameter is incompatible with the sortnegintof the formal parameter of the first rule
defining the functionminus. Therefore, that rule is skipped. The sortposevenis more specific
than the sortposintof the formal parameter of the second rule. Hence, that rule is applicable
and yields the resultY = negint.

June 1991 (Revised, November 1992) Digital PRL



Functions as Passive Constraints in LIFE 3

The LIFE queryY = minus(X : string) will fail. Indeed, the sortstring is incompatible with
the sort of the formal parameter of every rule definingminus.

Thus, in order to determine which of the rules, if any, defining the function in a given functional
expression will be applied, two tests are necessary:

� verify whether the actual parameter is more specific than or equal to the formal parameter;
� verify whether the actual parameter is at all compatible with the formal parameter.

What happens if both of these tests fail? For example, consider the query consisting of the
conjunction:

Y = minus(X : int);X = minus(zero)?

Like Prolog, LIFE follows a left-to-right resolution strategy and examines the equation
Y = minus(X : int) first. However, both foregoing tests fail and deciding which rule to use
among those definingminusis inconclusive. Indeed, the sortint of the actual parameter in
that call is neither more specific than, nor incompatible with, the sortnegintof the first rule’s
formal parameter. Therefore, the function call willresiduateon the variableX. This means
that the functional evaluation is suspended pending more information onX. The second goal
in the query is treated next. There, it is found that the actual parameter is incompatible with
the first two rules and is the same as the last rule’s. This allows reduction and bindsX to zero.
At this point,X has been instantiated and therefore the residual equation pending onX can be
reexamined. Again, as before, a redex is found for the last rule and yieldsY = zero.

The two tests above can in fact be worded in a more general setting. Viewing data structures
as constraints, “more specific” is simply a particular case of constraint entailment. We
will say that a constraintdisentailsanother whenever their conjunction is unsatisfiable; or,
equivalently, whenever it entails its negation. In particular, first-order matching is deciding
entailment between constraints consisting of equations over first-order terms. Similarly,
deciding unifiability of first-order terms amounts to deciding “compatibility” in the sense used
informally above.

The suspension/resumption mechanism illustrated in our example is repeatedeach time a
residuated actual parameter becomes more instantiated from the context;i.e., through solving
other parts of the query. Therefore, it is most beneficial for a practical algorithm testing
entailment and disentailment to be incremental. This means that, upon resumption, the test for
the instantiated actual parameter builds upon partial results obtained by the previous test. One
outcome of the results presented in this paper is that it is possible to build such a test; namely, an
algorithm deciding simultaneously two problems in an incremental manner—entailment and
disentailment. The technique that we have devised to do that is calledrelative simplification
of constraints.

This technique is relevant in the general framework of concurrent constraint logic programming,
represented by,e.g., the guarded Horn-clause scheme of Maher [20], Concurrent Constraint
Programming (CCP) [23], and Kernel Andorra Prolog (KAP) [15]. These schemes are
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4 Hassan Aı̈t-Kaci and Andreas Podelski

parameterized with respect to an abstract class of constraint systems. An incremental
test for entailment and disentailment between constraints is needed for advanced control
mechanisms such as delaying, coroutining, synchronization, committed choice, and deep
constraint propagation. LIFE is formally an instance of this scheme, namely a CLP language
using a constraint system based on order-sorted feature (OSF) structures [6]. It employs
a related, but limited, suspension strategy to enforce deterministic functional application.
Roughly, these systems are concurrent thanks to a new effective discipline for procedure
parameter-passing that we could describe as “call-by-constraint-entailment” (as opposed to
Prolog’s call-by-unification).

1.3 Organization of paper

We have organized the rest of this paper as follows. In Section 2, we cover informally the
essence of LIFE that is relevant to functions and explain the gist of our approach. Reading
only that section will provide a detailed intuition of the formal contents of the paper. It may be
skipped altogether by the formally-minded reader who can travel through the technical details
to follow without a road map. On the other hand, time spent there might reward the patient
reader with a better sense of direction and hence a faster pace through later technicalities.

The remainder of the paper is technical. In Section 3, we recall the necessary formalism
introduced in [6, 5] accounting for LIFE’s structures and operations. It is meant to make
this document self-contained. The reader already familiar with those notions could skip that
section, although reading it will provide a timely summary.

The last four sections contain the formal details and rigorous justifications of the material
presented informally in Section 2 and its relation to the semantics of -terms and LIFE’s
operational semantics. First, in Section 4, we introduce the concept of relative simplification as
a general proof-theoretic method for proving guards in concurrent constraint logic languages
using guarded rules. Then, in Section 5, we explain residuation using relative simplification.
Section 6 ties the operational semantics of function reduction with the semantics of -terms as
approximation structures. Finally, we conclude with Section 7, giving a brief recapitulation of
the contribution of this paper and a few perspectives.

2 Synopsis

This section is an informal, albeit precise and detailed, overview of the main ideas. Using
schematic examples, we explain the operational mechanism underlying functional reduction
over order-sorted feature terms in the context of a logic programming framework. We recall
the basic terminology and notation of LIFE, unification and matching, and we sketch the
essence of relative simplification. Formal material rewording everything in rigorous terms
will be exposed in the following sections.

June 1991 (Revised, November 1992) Digital PRL



Functions as Passive Constraints in LIFE 5

2.1 LIFE data structures

The data objects of LIFE are -terms. They are structures built out of sorts and features.
 -Terms are partially ordered as data descriptions to reflect more specific information content.
A  -term is said tomatchanother one if it is a more specific description. For first-order terms,
a matching substitution is a variable binding which makes the more general term equal to the
more specific one. This notion is not appropriate here. Unification is introduced as taking the
greatest lower bound (GLB) with respect to this ordering.

Sorts and features

Sorts are symbols. They are meant to denote sets of values. Here are a few examples:person,
int, true, 3:5,?,>. Note that a value is assimilated to a singleton sort. We callS the set of all
sorts. They come with a partial ordering�, meant to reflect set inclusion.2 For example,

� ? � john� man� person� >;
� ? � true� bool� >;
� ? � 2� poseven� int � >.

The sorts> (top) and? (bottom) are respectively the greatest and the least sort inS and
denote respectively the whole domain of interpretation and the empty set.

Sorts also come with a GLB operation̂. For example,

� person̂ male= man;
� male^ female= hermaphrodite;
� man^ woman= ?;

etc., which can be visualized as shown in Figure 1. We will refer back to this figure in several
examples to come.

Features (or attribute labels) are also symbols and used to build -terms by attaching attributes
to sorts. The set of feature symbols is calledF . We will use words and natural numbers as
features. The latter are handy to specify attributes by positions as subterms in first-order terms.
Examples of feature symbols areage, spouse, 1, 2.

 -Terms

Basic -terms are the simplest form of -terms. They are:

� variables;e.g., X;Y;Z; . . .
� sorts;e.g., person; int; true;3:5;>; . . .
� tagged sorts;e.g., X : >; Y : person; . . .

Stand-alone variables are always implicitly sorted by>, and stand-alone sorts are always
implicitly tagged by some variable occurring nowhere else. Thus, one might say that a basic

2Sorts and their relative ordering are specified by the user.

Research Report No. 13 June 1991 (Revised, November 1992)



6 Hassan Aı̈t-Kaci and Andreas Podelski
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Figure 1. A partial order of sorts

 -term is always of the formvariable : sort.

Features are used to build up more complex -terms. Thus, the following -term is obtained
from the -termpersonby attaching the featureagetyped by the -termint:3

X : person(age) I : int):

The sort at the root of a -term, hereperson, is called itsprincipal sort. A  -term can be seen
as a record structure. Features correspond to field identifiers, and fields are, in turn, associated
to  -terms. These are flexible records in the sense that variably many fields may be attached
to the principal sort. For example, we can augment the -term above with another feature:

X : person(age) I : int;
spouse) Y : person(age) J : int)):

This  -term denotes the set of all objectsX of sort person(in the intended domain), whose
valueI under the functionageis of sortint, whose valueY under the functionspouseis of sort
person, and the valueJ of Y under the functionageis of sortint.

The following -term is more specific, in the sense that the above set becomes smaller if one
further requires that the valuesI andJ coincide; namely,age(X) = age(spouse(X)):

X : person(age) I : int;
spouse) Y : person(age) I)):

3To illustrate the -term ordering, we will give a decreasing matching sequence of -terms going from more
general to more specific ones.

June 1991 (Revised, November 1992) Digital PRL



Functions as Passive Constraints in LIFE 7

It denotes the subset of individuals in the previous set ofperson’s whose age is the same as
their spouse’s. This -term uses a coreference thanks to sharing the variableI. The next
 -term is even more specific, since it contains an additional (circular) coreference; namely,
X = spouse(spouse(X)):

X : person(age) I : int;
spouse) Y : person(age) I;

spouse) X)):

It denotes the set of all individuals in the previous set whose spouse’s spouse is the individual
in question. Note that only variables that are used as coreference tags need to be put explicitly;
i.e., those that occur at least twice.

To be well-formed, the syntax of a -term requires three conditions to be satisfied: (1) the
sort ? may not occur; (2) at most one occurrence of each variable has a sort; (3) all the
features attached to a sort are pairwise different. These conditions are necessary to ensure
that a -term expresses coherent information. For example,X : man(friend) X : woman),
violating Condition (2), is not a -term, butX : man(friend) X) is.

As for ordering, a -term is made more specific through:

� sort refinement;e.g., X : int � U : >;
� adding features typed by -terms;e.g., X : >(age) int) � U : >;
� adding coreference;e.g., X : >(likes) X) � U : >(likes) V).

Note that, as record structures, -terms are both record types and record instances. In addition,
they allowmixing type and value information. Finally, they also permit constraining records
with equations on their parts.

 -Terms as graphs

There is a straightforward representation of a -term as a rooted directed graph. Let us assume
that every variable is explicitly sorted (if necessary, by the sort>) and every sort is explicitly
tagged (if necessary, by a single-occurrence variable). The nodes of the graph are the variables,
their labels are the corresponding sorts; for every feature mapping one variableX to another
oneY there is an arc(X;Y) labeled by that feature. One node is marked as the root (whose
label is called the root sort or the principal sort of the -term).

For example, the -term:

X1 : person(name) X2 : id(first) X3 : string;
last) X4 : string);

spouse) X5 : person(name) X6 : id(last) X4);
spouse) X1)).

corresponds to the OSF-graph shown in Figure 2.

Research Report No. 13 June 1991 (Revised, November 1992)



8 Hassan Aı̈t-Kaci and Andreas Podelski

- X1 : person

X5 : person
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X2 : id
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Figure 2. An OSF-Graph

 -Terms as values

One particular interpretation is readily available for -terms. Namely, the syntactic interpre-
tation whose domain is the set of all -terms. Note that -terms have a dual personality.
They are syntactic objects (graphs) representing the values of the domain of ,and they also
are types which denote sets. In the particular case of the interpretation , they denote subsets of
the domain of ;i.e., sets of -terms. We shall see this dual view does not lead to paradox,au
contraire.

In the interpretation , a sorts2 S denotes the set of all -terms whose root sort is a subsort of
s. A feature` 2 F denotes the function mapping a -term to its sub- -term under that feature,
or to>, if there is none.

Thus, a sort denotes the set of all -term values which, as -term types, are more specific
than the basic -terms. In fact, it is possible to show that in general a -term denotes the set
of all  -terms which are more specific than the -term itself. This is the “ -terms as filters”
principle established in [5]. It yields directly the fact that the partial ordering� on -terms is
exactly set-inclusion of the sets denoted by the -terms in the -term domain.

Feature trees as values

We obtain two other examples of OSF-algebras when we “compress” the -term domain by
identifying values. In a first step, we say that two -terms which are equal up to variable
renaming represent the same value of the domain, or: two isomorphic graphs are identified.
We call the OSF-algebra hereby obtained0.

It is well known that a rooted directed graph represents a unique rational tree obtained by

June 1991 (Revised, November 1992) Digital PRL



Functions as Passive Constraints in LIFE 9

unfolding. Hence, unfolding an OSF-graph yields what we call a feature tree. Such a tree is
one whose nodes are labeled with sorts and whose edges are labeled with features. Therefore,
we can also identify -terms which represent the same rational tree. The domain hereby
obtained is essentially the feature tree structureT introduced first in [7] and [8].

Unification of  -terms

We say that 1 is unifiable with 2 if  1 ^ 2 6= ?; i.e., if there exist -terms with non-empty
denotations which are more specific than both 1 and 2. Then, one can show that there
exists a unique (up to variable renaming) -term which is the most general of all these, the
‘greatest lower bound’ (GLB) of 1 and 2, written =  1 ^  2.

For the set denotation of -terms,̂ is exactly set intersection. An important result illustrating
the significance of the -term interpretation is that 1 is unifiable with 2 if and only if the
intersection of the two sets denoted by 1 and 2 in the -term domain is non-empty.

Constraints and  -terms

We also view a -term logically as a constraint formula by flattening it into what we call its
dissolved form. For ease of notation, we shall write(X :  ) to indicate that the root variable
of the -term is X.

More precisely, the -term X : s(`1 ) (X1 :  1); . . .; `n ) (Xn :  n)) corresponds to the
conjunction of the constraintX : s & X:`1

:
= X1 & X:`n

:
= Xn and of the constraints

corresponding to 1; . . .;  n. A basic -termX : scorresponds to the sort constraintX : s. For
example, the -term:

 � X : person(likes) X;
age) Y : int)

is identified with the constraint:

 � X : person& X:age := Y & Y : int & X:likes := X:

Thus, the constraint is a conjunction of atomic sort constraints of the formX : s and atomic
feature constraints of the formX:` := Y. The interpretation of the sort and feature constraints
over the intended domain is straightforward, given that sorts are interpreted as subsets of the
domain and features as unary functions over the domain.

A value lies in the set denoted by the -term  in an interpretationI if and only if the
constraintX :

= Z &  is satisfiable in the interpretationI, with that value assigned to the
variableX, andZ being the root variable of . All variables of are implicitly existentially
quantified. This reflects our view of -terms as set-denoting types.

Research Report No. 13 June 1991 (Revised, November 1992)



10 Hassan Aı̈t-Kaci and Andreas Podelski

Rules for unification

Unifying (X1 :  1) and (X2 :  2) amounts to deciding satisfiability of the conjunction
 1 &  2 & X1

:
= X2. Thus, the unification algorithm can be specified in terms of constraint

normalization rules. A constraint containing the conjunction over the line is rewritten into an
equivalentconstraint by replacing this conjunction by the constraint under the line. We only
need four rules that are illustrated schematically on an example below. (Refer to the sorts of
Figure 1.)

Equality:

. . . X : person & U : male & U :
= X . . .

. . . X : person & X : male & U :
= X . . .

Sorts:

. . . X : person & X : male . . .
. . . X : man . . .

Features:

. . . X:likes := Y & X:likes := V . . .
. . . X:likes := Y & V :

= Y . . .

Clash:

. . . X : ? . . .
?

One can show that a constraint is satisfiable if and only if it is normalized to a constraint
different from thefalseconstraint?. If we identify every constraint containing a sort constraint
of the formX : ? with the falseconstraint, we omit the clash rule.

In particular, the -terms(X1 :  1)and(X2 :  2)are unifiable if and only if 1 &  2 & X1
:
= X2

is normalized into a constraint different from?. This constraint corresponds, apart from
its equalities (between variables), to the -term (unique up to variable renaming) 1 ^  2.

2.2 Relative simplification

We use the framework of first-order logic to transform the combined entailment/disentailment
problem into one that can be solved by the relative simplification algorithm.

Matching and entailment

In the remainder of this paper, when considering the matching problem 1 �  2, we will refer
to  1 as the actual parameter and its variables (namedX;Y;Z; . . .) as global, and to 2 as the
formal parameter and its variables (namedU;V;W; . . .) as local.
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In the Concurrent Constraint Logic Programming framework, the matching problem generalizes
to the entailment problem; namely, whether the actual constraint, also called context, entails
the formal constraint, also called guard [20, 23].

First observe that, for example, the first-order termt1 = f (Z; f (Y;Y)) matches the term
t2 = f (W;V), and that the implication:

8X8Y8Z
�

X :
= f (Z; f (Y;Y))! 9U9V9W (X :

= U & U :
= f (W;V))

�

is valid. Generally, the termt1 matchest2 (noted t1 � t2) if and only the implication
X :
= t1 ! 9U9V (X :

= U & U :
= t2) is valid, whereV stands for all variables oft2. More

shortly,X :
= t1 entailsX :

= U & U :
= t2.

Note, however, that there is an essential difference between -term matching and first-order
term matching. For example, the termf (a; a) matches the termf (V;V). This is true because
first order terms denote individuals. This is no longer true in LIFE. For example, the -term
X : f (1) Y : int; 2) Z : int) does not match the -termU : f (1) V; 2) V). Indeed, the
presence of two occurrences of the same sort does not entail that the individuals in that sort be
equal. Therefore,X : s(1)  1; 2)  2) is less specific than the -termU : s(1) V; 2) V)
only if the root variables of 1 and 2 are identical (or bound together).

This doesnot mean that values and operations on them are not available in LIFE.4 What the
above point illustrates is that to recognize that a sort is a fully determined value, and hence to
enforce identity of all its distinct occurrences, one needs this information declared explicitly,
in effect adding an axiom to the formalization of such sorts. So-declaredextensionalsorts can
then be treated accordingly thanks to an additional inference rule (being a minimal non-bottom
sort is not sufficient). Without this rule, however, equality of distinct occurrences cannot be
entailed and the behavior illustrated is the only correct one. The point of this paper being
independent if this issue, we shall omit this additional rule.

The fact that(X :  1) � (U :  2), i.e., the -term (X :  1) matches the -term (U :  2),
translates into the fact that the corresponding constraint 1 entailsthe constraint 2 & U :

= X.
This means that the implication 1 ! 9U;V;W . . .  2 & U :

= X is valid. Here,9U;V;W . . .
indicates that all local variables are existentiallyquantified. The global variables are universally
quantified.

Entailment of general constraints

We will now give a precise explanation of a fact which is well-known for constructor terms.
An actual parametert1 matches a formal parametert2 if and only if the unification of the two
terms binds only variables oft2, but no variable oft1. In other words, only local, but no global,
variables are instantiated.

4Of course, one can use actual values of sortint, real, or string in expressions with their usual operations as
in most programming languages. In fact, LIFE provides the additional freedom to write such expressions mixing
actual values or their sort approximationsint, real, orstring. Such expressionsare either solved by local propagation
or residuatepending further refinements of the non-value sorts into values.
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12 Hassan Aı̈t-Kaci and Andreas Podelski

The unification of the termt1 = f (Z; f (Y;Y)) and the termt2 = f (W;V) yields the variable
bindingsW :

= Z andV :
= f (Y;Y). On the other hand, the conjunction:

X :
= f (Z; f (Y;Y)) & U :

= X & U :
= f (W;V)

is equivalent to:

X :
= f (Z; f (Y;Y)) &

�
U :
= X & V :

= f (Y;Y) & W :
= Z

�
;

and the last part of this conjunction is valid if the local variablesU;V;W are existentially
quantified.

This is the general principle which underlies the relative simplification algorithm. Namely, the
actual constraint 1 entails 2 & U :

= X if and only if the following holds. Their conjunction
 1 &  2 & U :

= X is equivalent to the conjunction 1 &  02 of the actual constraint 1 and a
constraint 02 which is valid if existentially quantified over the local variables. In our case, 02
will be a conjunction of equalities binding local to global variables. Formally,

j=  1 ! 9U;V;W; . . .  2 & U :
= X

if and only if there exists a formula 02 such that:

j= ( 1 &  2 & U :
= X)$ ( 1 &  02) and j= 9U;V;W. . .  02:

This statement is correct since validity of the implication 1 ! 9U  2 & U :
= X is the same as

the validity of the equivalence
�
 1 & (9U  2 & U :

= X)
�
$  1. This fact is analogous to the

fact that a set is the subset of another one if and only if it is equal to the intersection of the two.
The conditionj= 9U;V;W . . .  02 in the statement expresses that 1 & (9U;V;W; . . .  02) is
equivalent to 1.

Towards relative simplification

Operationally, in order to show that(X :  1) � (U :  2) holds, it is sufficient to show that
the conjunction 1 &  2 & U :

= X is equivalent to 1 &  02, where 02 is some constraint
which, existentially quantified over the variables of 2, is valid. In our case, again, 02 will be
a conjunction of equalities binding variables of 2 to variables of 1.

Therefore, in order to test(X :  1) � (U :  2), we will apply successively the unification
rules on the constraint 1 &  2 & U :

= X if they do not modify 1. We obtain three kinds of
transformations which are illustrated schematically below. (Refer to the sorts of Figure 1.)

Equality:

. . . X :
= Y & U :

= X . . .
. . . X :

= Y & U :
= Y . . .
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Sorts:

. . . X : man & U :
= X & U : person . . .

. . . X : man & U :
= X . . .

Features:

. . . X:likes := Y & U :
= X & U:likes := V . . .

. . . X:likes := Y & U :
= X & V :

= Y . . .

The equality rule is derived from the corresponding unification rule, which has to be restricted
to modify only the formal constraint. If the actual constraint contains an equality between two
global variables, then one of them may be eliminated for the other. A global variable is never
eliminated for a local one.

The sort rule corresponds to two applications of unification rules, first the elimination of the
local by the global variable, and then the reduction of two sort constraints on the same variable
(hereX : man& X : person) to one sort constraint (namelyX : man^ person). Clearly, if the
“global sort” is a subsort of the “local sort” then this application does not modify the global
constraint. The feature rule works quite similarly.

For example, the rules above can be used to show that the -term:

 1 � X : man(likes) Y : person; age) I : int)

matches the -term:

 2 � U : person(likes) V):

Namely, the constraint 1 &  2 & U :
= X :

X : man & X:likes := Y & Y : person & X:age := I & I : int
& U : person & U:likes := V
& U :

= X

is normalized into:

X : man & X:likes := Y & Y : person & X:age := I & I : int
& V :

= Y & U :
= X;

that is,

 1 & V :
= Y & U :

= X:

Clearly,9U9V
�
V :
= Y & U :

= X
�

is valid. Therefore, the constraint 1 entails the constraint
 2 & U :

= X.
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14 Hassan Aı̈t-Kaci and Andreas Podelski

Relative simplification for entailment

The rules above are such that 1 &  rewrites to 1 &  0; i.e., the global constraint 1 is
not modified by the simplification. In this case, we say that the constraint simplifies to 0

relatively to the actual constraint 1. In other words, 1 acts as a context relatively to which
simplification of is carried out. In general, this context formula may be any formula. Hence,
we can reformulate the rules above as relative-simplification rules. We use the notation 

 0 [�]

to mean that is simplified into 0 relatively to the context formula�. Schematically,

Equality:

. . . U :
= X . . .

. . . U :
= Y . . .

[ . . . X
:
= Y . . . ]

Sorts:

. . . U :
= X & U : person . . .

. . . U :
= X & . . .

[ . . . X : man . . . ]

Features:

. . . U :
= X & U:likes := V . . .

. . . U :
= X & V :

= Y . . .
[ . . . X:likes

:
= Y . . . ]

Using these rules, the constraint 2 � U :
= X & U : person& U:likes :

= V in the previous
example simplifies to 02 � U :

= X & V :
= Y relatively to:

 1 � X : man& X:likes := Y & Y : person& X:age := I & I : int:

Invariance of relative simplificationis the following property. If simplifies to 0 relatively
to �, then the conjunction of with � is equivalent to the conjunction of 0 with �.

This invariance justifies the correctness of the relative simplification algorithm with respect to
entailment. Namely, if simplifies to 0 relatively to�, and if 0 consists only of equations
binding local variables, then� entails .

Proof of completeness of the algorithm needs the assumption that the setF of features is
infinite. Note that exactly thanks to the infiniteness ofF our framework accounts for flexible
records;i.e., the indefinite capacity of adding fields to records.

Relative simplification for disentailment

If the result of the matching test 1 �  2 is negative,i.e., the actual constraint does not
entail the formal constraint, then we must know more; namely, whether the two terms are
non-unifiable. Non-unifiability is equivalent to the fact that the actual parameter will not

June 1991 (Revised, November 1992) Digital PRL



Functions as Passive Constraints in LIFE 15

match the formal one even when further instantiated;e.g., when further constraints are attached
as conjuncts. Logically, this amounts to saying that a context formula� disentailsa guard
constraint if and only if the conjunction� &  is unsatisfiable. In terms of relative
simplification,� disentails if and only if simplifies to thefalseconstraint? relatively to�.

For example,X : maleis non-unifiable withU : woman.5 The constraintU : woman& U :
= X

simplifies to? relatively to the constraintX : male, sincewoman̂ male= ?, using a rule of
the form indicated below, and then the Clash rule.

Sorts:

. . . U :
= X & U : woman . . .

. . . U :
= X & U : woman̂ male . . .

[ . . . X : male . . . ]

The following example shows that a sort clash cannot always be detected by comparing sorts
in the formal constraint one by one with sorts in the actual constraint;i.e., one needs several
steps with intermediate sort intersections.

The -term Z : >(likes) X : male; friend) Y : female) is non-unifiable with the -term
W : >(likes) U : person; friend) U). The constraint� � X : male & Y : female
disentails the constraint � U :

= X & U :
= Y & U : person. Operationally, the constraint 

simplifies to? relatively to the context�. Here are the steps needed to determine this:

. . . U :
= X & U :

= Y & U : person . . .

. . . U :
= X & U :

= Y & U : person̂ male . . .

. . . U :
= X & U :

= Y & U : man^ female . . .

?

There is an issue regarding the enforcing of functionality of features in the simplification of a
constraint relatively to a context�. This may be explained as follows. Let us suppose that
two global variablesX andY become bound to the same local variableU. Then,

� the context� entails the constraint only if � containsX :
= Y; and,

� the context� disentails the constraint if the same path of features starting fromX and
Y, respectively, leads to variablesX0 andY0, respectively, whose sorts are incompatible.

There are essentially two cases, depending on whether a new local variable has to be introduced
or not. Each case is illustrated in the next two examples.

The -term:6

� � Z : >(likes) X : >(age) I1 : poseven);
friend) Y : >(age) I2 : posodd))

5Refer to the sorts of Figure 1.
6We assume thatposeven̂ posodd= ?.
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is non-unifiable with the -term:

 � W : >(likes) U;
friend) U)

That is, the constraint� disentails the constraint . Operationally, with the context�, the
constraint simplifies, in a first step, to:

W :
= Z & U :

= X & U :
= Y:

Then, using the rule:

. . . U :
= X & U :

= Y . . .
. . . U :

= X & U :
= Y & J :

= I1 & J :
= I2 . . .

[ . . . X:age
:
= I1 & Y:age

:
= I2 . . . ]

whereJ is a new variable, to:

W :
= Z & U :

= X & U :
= Y & J :

= I1 & J :
= I2

and finally to?, since the sorts ofI1 andI2 (posevenandposodd) are incompatible.

The rules enforce the following property: a global variable is never bound to more than one
local variable. Therefore, if the variableX or the variableY is already bound to a local variable,
nonew local variable must be introduced. This is illustrated by the second example.

The -term:

� � Z : >(likes) X : >(age) I1 : poseven);
friend) Y : >(age) I2 : posodd);
age) I1)

is non-unifiable with the -term:

 � W : >(likes) U;
friend) U(age) J);
age) J):

Operationally, with the context�, the constraint simplifies, in a first step, to:

W :
= Z & U :

= X & U :
= Y & J :

= I1:

Then, using the rule:
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. . . U :
= X & U :

= Y & J :
= I1 . . .

. . . U :
= X & U :

= Y & J :
= I1 & J :

= I2 . . .
[ . . . X:age

:
= I1 & Y:age

:
= I2 . . . ]

whereJ is a new variable, to:

W :
= Z & U :

= X & U :
= Y & J :

= I1 & J :
= I2

and finally to?, for the same reason as above.

In order to be complete with respect to disentailment, the algorithm must keep track of all pairs
of variables(X;Y); . . .; (X0;Y0) whose equality is induced by the binding ofX andY to the
same local variable. That is, it must propagate equalities along features. In our presentation,
it will be conceptually sufficient to refer explicitly to the actual equalities binding the global
variables to a common local variable. Practically, this can of course be done more efficiently.

Specifying the relative simplification algorithm

If  & U :
= X simplifies to 0 relatively to� and no relative-simplification rule can be applied

further, then:

� � entails & U :
= X; formally,

j= �! 9U;V;W. . .( & U :
= X);

if and only if 0, with the variables of existentially quantified, is valid; formally:

j= 9U;V;W. . .  0:

� � disentails & U :
= X; formally:

j= �! :9U;V;W. . .( & U :
= X);

if and only if 0 = ?.

This test isincremental. Namely, every relative simplification of the constraint to some
constraint 0 relatively to the context� is also a relative simplification relatively to an
incremented context� & �0, for any constraint�0.

Recapitulating, our original goal was a simultaneous test of matching and non-unifiability for
two given -terms 1 and 2. This test was recast as a test of entailment and disentailment
for the constraints to which the -terms dissolve. Namely, ifX andU are the root variables of
 1 and 2, respectively, the test whether 1 entails or disentails 2 & U :

= X.

In our setting, the entailment test succeeds if and only if 02 is a conjunction of matching
equations;i.e., of the form 02 � U :

= X & V :
= Y & W :

= Z . . ., where the local variablesU,
V, W, . . . are all different.
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3 Background

We introduce briefly the notions that we have used informally in Section 2. For a thorough
investigation of these notions, the reader is referred to [6, 5].

We start with the notion of OSF-algebras. They are the semantic structures interpreting
complex data objects built out of features and partially-ordered sorts. Mathematically, an
OSF-algebra formalizes access into the parts making up a piece of datum as well as their
categorization. We then introduce OSF-constraints. They are important since, although they
are formal objects which are part of a logical formalism, they are also quite primitive to
constitute a low-level implementation logic.7 We then formalize -terms as they not only
constitute a syntactically pleasant and convenient surface language for data objects in LIFE,
but also comprise a syntactic OSF-algebra. Namely, they are representations of values of the
domain of the standard interpretation. Finally, we summarize a few facts about this formalism
that are relevant as related to the global contents of the paper.

3.1 OSF-algebras and OSF-constraints

The building blocks of OSF-algebras are sorts and features.

An order-sorted feature signature(or simply OSF-signature) is a tuplehS;�;^;Fi such that:

� S is a set ofsortscontaining the sorts> and?;
� � is a decidable partial order onS such that? is the least and> is the greatest element;
� hS;�;^i is a lower semi-lattice (s^ s0 is called the greatest common subsort of sortss

ands0);
� F is a set offeature symbols.

An OSF-signature has the following interpretation. AnOSF-algebraover the signature
hS;�;^;Fi is a structure:

A = h DA ;
�
sA
�

s2S ;
�
`A
�
`2F

i

such that:

� DA is a non-empty set, called thedomainof A (or, universe);
� for each sort symbols in S, sA is a subset of the domain; in particular,>A = DA and
?A = ;;

� the greatest lower bound (GLB) operation on the sorts is interpreted as the intersection;
i.e., (s^ s0)A = sA \ s0A for two sortss ands0 in S.

� for each featurè in F , `A is a total unary function from the domain into the domain;
i.e., `A : DA 7! DA;

7In fact, the reader familiar with implementation techniques of Prolog [2] should recognize that they are of the
exact same granularity as WAM term representation and instructions.
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The notion of OSF-algebra calls naturally for a corresponding notion of homomorphism
preserving structure appropriately. Namely,

Definition 1 (OSF-Homomorphism) An OSF-algebra homomorphism
 : A 7! B between
two OSF-algebrasA andB is a function
 : DA 7! DB such that:

� 

�
`A(d)

�
= `B

�

(d)

�
for all d 2 DA;

� 

�
sA
�
� sB.

It is straightforward to verify that OSF-algebras together with OSF-homomorphisms form a
category. We call this category OSF.

Let V be a countably infinite set of variables.

Definition 2 (OSF-Constraint) An atomic OSF-constraint is one of:

� X : s,
� X :

= X0,
� X:` := X0,

where X and X0 are variables inV , s is a sort inS, and` is a feature inF . An OSF-constraint
is a conjunction of atomic OSF-constraints.

One reads the three forms of atomic OSF-constraints as, respectively, “X lies in sorts,” “ X
is equal toX0,” and “X0 is the featurè of X.” The setVar(�) of variables occurring in an
OSF-constraint� is defined in the standard way. OSF-constraints will always be considered
equal if they are equal modulo the commutativity, associativity and idempotence of conjunction
“&.” Therefore, a constraint can also be formalized as the set consisting of its conjuncts. As
usual, the empty conjunction corresponds to the propositional constant interpreted astrue.

LetA be an OSF-algebra. We callVal(A) = f� : V 7! DAg the set of all possible valuations
in the interpretationA. The semantics of OSF-constraints is straightforward.

GivenA is OSF-algebra, an OSF-constraint� is satisfiablein A, if there exists a valuation
� : V 7! DA such thatA; � j= �, where:

� A; � j= X : s if and only if �(X) 2 sA;
� A; � j= X :

= Y if and only if �(X) = �(Y);
� A; � j= X:` := Y if and only if `A(�(X)) = �(Y);
� A; � j= � & �0 if and only if A; � j= � andA; � j= �0:

3.2  -Terms

We now introduce the syntactic objects that we intend to use as expressions of approximate
descriptions to be interpreted as subsets of the domain of an OSF-algebra. Later, we will use
them as well as representations of values constituting the domain of a specific interpretation.
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Definition 3 ( -Term) A -term is an expression of the form:

X : s(`1 )  1; . . .; `n )  n)

where

� X is a variable inV called the root of ;
� s is a sort different from? in S;
� `1; . . .; `n are pairwise different features inF , n� 0;
�  1; . . .;  n are again -terms; and,
� no variable Y occurring in is the root variable of more than one non-trivial -term

(i.e., different than Y: >).

Note that the equation above includesn = 0 as a base case. That is, the simplest -terms are
of the formX : s.

We can associate to a -term = X : s(`1 )  1; . . .; `n )  n) the OSF-constraint:

�( ) = X : s & X:`1
:
= Y1 & . . . & X:`n

:
= Yn & �( 1) & . . . & �( n)

whereY1; . . .;Yn are the roots of 1; . . .;  n, respectively. We say that the OSF-constraint
�( ) is obtained fromdissolvingthe -term , and refer to the OSF-constraint as thedissolved
 -term. We will often deliberately confuse a -term  with its dissolved form�( ) and
simply refer to�( ) simply as .

Given the interpretationA, thedenotation[[ ]]A;� under a valuation� : V 7! DA of a -term
 with rootX is given as:

[[ ]]A;� = fd 2 DA j �(X) = d; A; � j=  g:

Note that this is either the singletonf�(X)g or the empty set.

The type-as-set denotationof a -term is defined as the set of domain elements:

[[ ]]A =
[

�2Val(A)

[[ ]]A;�:

This amounts to saying that:

[[ ]]A = fd 2 DA j there exists� 2 Val(A) such that�(Z) = d; andA; � j= 9X Z :  g

whereZ is a new variable not occurring in , X = Var( ), Z :  stands forZ :
= X &  , and

X 2 X is ’s root variable.
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A  -term with rootX corresponds to a unique rooted graphg which is the direct translation
of the constraint together with an indication of the root. The nodes ofg are exactly the
variables of . A nodeZ is labeled by the sorts if the conjunction contains a non-trivial
sort constraintZ : s, and by the sort>, otherwise. For every feature constraintY:` :

= Z the
graphg has a directed edge(Y;Z) which is labeled by the featurè. The root ofg is the node
X. Clearly,g is the natural graphical representation of .8

3.3 Syntactic interpretations

Among all OSF-algebras, there are those whose domain elements are concrete data structures.
We call thesesyntactic interpretations. We will now present three important examples
obtained directly from the syntactic expressions of -terms. They turn out to becanonical
interpretationsfor OSF-constraints.9

The most immediate syntactic OSF-interpretation is the OSF-algebra of -terms. The domain
of is the set of all -terms, up to graph representation. That is, we identify -terms
as values of if they are represented by the same graph. For example, the two -terms
Y : s(`1 ) X : s0; `2 ) X) and Y : s(`1 ) X; `2 ) X : s0) clearly correspond to the same
object. Indeed, they have the same OSF-graph representation.

Sortss2 S are interpreted as:

s = f 2 D j s0 � s; wheres0 is the root sort of the graph of g;

and features̀ 2 F are interpreted as functions` : D 7! D as follows. Let be a -term
andg its graph. If(X;Y) is the edge ofg labeled bỳ , then`(g) is the -term represented
by the maximally connected subgraphg0 of g rooted at the nodeY. That is,g0 is obtained by
removing all nodes and edges which are not reachable by a directed path from the nodeY.

If X does not have the feature`, i.e., there is no outgoing edge from the root ofg labeled`,
then` is the -termZ`; : >, for a new variableZ`; uniquely determined by the feature` and
the -term .

For example, taking = X : >(`1 ) Y : s; `2 ) X), we havè 1( ) = Y : s, `2( ) =  , and
`3( ) = Z`3; : >.

We obtain two other examples of OSF-algebras when we factorize the -term domain by
further identifying values. The first one identifies two -terms which are equal up to variable
renaming. The obtained domain obviously spans an OSF-algebra. We call this OSF-algebra0.

The second one is obtained from0 by further identifying two -terms if their (possibly infinite)
tree unfoldings are equal. A tree unfolding is obtained from a -term by associating a unique
node to every feature path. It is well known that a rooted directed graph represents a unique
rational tree [14]. In our case, we obtain trees whose nodes are labeled by sorts and whose

8Refer to Figure 2 on Page 8 for an example.
9If an OSF-constraint is satisfiable in some interpretation, then it is also satisfiable in all canonical interpretations.
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edges are labeled by features. We call these (rational) OSF-trees. It is again clear that the set
of all OSF-trees spans an OSF-algebraT .10

Formally, OSF-algebras can also be introduced as logical structures, namely models providing
interpretations for the sort symbols as unary predicates and the feature symbols as unary
functions, which satisfy theSort Axiomsaying, for all sortssands0,

X : s & X : s0 ! X : s^ s0:

Furthermore, both0 andT satisfy aConstructibility Axiomstating essentially the satisfiability
of any OSF-constraint� coming from dissolving a -term . More precisely, ifX = Var(�)
and, fori = 1; . . .; n, Xi:`i

:
= Y 62 � for any variableY, andYi 62 Var(�), andXi 2 X , then this

axiom states the validity of:

8Y1: . . .8Yn: 9X : � & X1:`1
:
= Y1 & . . . & Xn:`n

:
= Yn:

The constructibility axiom is a generalization of the axiom of functionality which is valid for
first-order terms. Namely, the axiom which guarantees that, given a constructor symbolf of
rankn, an individualX = f (Y1; . . .;Yn) exists if individualsYi exist, i = 1; . . .; n. Formally,
taking� = X : f ,

8Y1: . . .8Yn: 9X: X : f & X:1 :
= Y1 & . . . & X:n :

= Yn:

The form we give for constructibility is indeed more general than plain functionality since it
states the existence of something which is not valid for first-order terms;e.g., self-referential
individuals. For example,9X: X:` :

= X is obtained as an instance of our axiom by taking
n = 0 and� = X:` := X.

3.4 OSF-unification

We describe next how to determine whether an OSF-constraint� is consistent;i.e., if it is
satisfiable in some OSF-algebraA—and, therefore, in particular in . Unification of two
 -terms reduces to this problem.

Definition 4 (Solved OSF-Constraints) An OSF-constraint� is called solvedif for every
variable X,� contains:

� at most one sort constraint of the form X: s, with? < s;
� at most one feature constraint of the form X:` := Y for each̀ ; and,
� no other occurrence of the variable X if it contains the equality constraint X:

= Y.

10T is essentially the feature tree structure of [7] and [8, 25]. The difference lies in our using partially-ordered
sorts and total, as opposed to partial, features.
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In [6, 5], we show that an OSF-constraint in solved form is always satisfiable. Now, by
Definition 3, the OSF-constraint obtained as the dissolved form of any -term is de facto
in solved form.11 Hence, such a constraint is always satisfiable. It is so, in particular, in the
canonical interpretation with, interestingly enough, the valuation that assigns to each variable
X in  the value inD that is the very -term rooted inX in  . For this reason, a -term can
also be seen as a variable substitution.

Given an OSF-constraint�, it can be normalized by choosing non-deterministically and
applying any applicable rule among the transformations rules shown in Figure 3 until none

Feature Decomposition:

(B.1)
 & U:`

:
= V & U:`

:
= W

 & U:`
:
= V & W

:
= V

Sort Intersection:

(B.2)
 & U : s & U : s0

 & U : s^ s0

Variable Elimination:

(B.3)
 & U

:
= V

 [V=U] & U
:
= V

if U 2 Var( ) and U 6= V

Inconsistent Sort:

(B.4)
 & X : ?

?

Variable Clean-up:

(B.5)
 & U

:
= U

 

Figure 3. Basic simplification

applies. A rule transforms the numerator into the denominator. The expression�[X=Y] stands
for the formula obtained from� after replacing all occurrences ofY by X.

Theorem 1 (OSF-Constraint Normalization) The rules of Figure 3 are solution-preserving,
finite terminating, and confluent (modulo variable renaming). Furthermore, they always result
in a normal form that is either thefalseconstraint? or an OSF-constraint in solved form.

11More precisely, this is true if we forget superfluous trivial sort constraints of the formX : >.
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For our purposes, the constraint� to be normalized will be of the form 1 &  2 & X1
:
= X2;

i.e., the conjunction of the dissolved -terms 1 and 2 together with an equation identifying
their root variablesX1 andX2. If � normalizes to thefalseconstraint, then the two -terms
are non-unifiable. Otherwise, the resulting solved OSF-constraint is a conjunction of equality
constraints and of the dissolved form of some -term. This -term isthe most general unifier
of  1 and 2, up to variable renaming. We shall see that this -term has two equivalent
order-theoretic characterizations (cf., Propositions 3 and 4).

3.5 OSF-orderings and semantic transparency

In this section, we first introduce the notion ofendomorphic approximationwhich captures
precisely and elegantly object inheritance. We also show how it relates to the logic and type
views.

Endomorphisms on a given OSF-algebraA, i.e., homomorphisms fromA to A, induce a
natural partial ordering.

Definition 5 (Endomorphic Approximation) On each OSF-algebraA an approximation
preordervA is defined such that, for two elements d and e in DA, d approximatese if and only
if e is an endomorphic image of d. Formally,

d vA e iff 
(d) = e for some endomorphism
 : A 7! A:

We shall omit subscriptingvA and writev whenA = . Notice that this ordering on -terms
as values of the domain of translates into an information-theoretic approximation ordering on
 -terms as types.

We note that endomorphisms on are graph homomorphisms with the additional sort-
compatibility property. A node labeled with sorts is always mapped into a node labeled withs
or a subsort ofs. An edge labeled with a feature is mapped into an edge labeled with the same
feature. Thus, endomorphic approximation captures exactly object-oriented class inheritance.
Indeed, if an attribute is present in a class, then it is also present in a subclass with a sort that
is the same or refined. Since features are total functions, this also takes care of introducing
a new attribute in a subclass: it refines>. Note also, that the restriction of
 to the set of
nodes defines a variable binding; it corresponds to the notion of a matching substitution for
first-order terms.

The following fact was established in [6, 5].

Proposition 1 ( -Terms as Filters) The denotation of a -term in is the set of all -terms
it approximates; i.e.,

[[ ]] = f 0 2 D j  v  0g:
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The next ordering is the type ordering on -terms which we informally called “more specific
than” in Section 1.2 and Section 2.

Definition 6 ( -Term Subsumption) A  -term is subsumed bya  -term 0 if and only if
the denotation of is contained in that of 0 in all interpretations. Formally,

 �  0 iff [[ ]]A � [[ 0]]A

for all OSF-algebrasA.

In fact, it is sufficient to limit the above statement to the OSF-algebra only;i.e., [[ ]] � [[ 0]].

The next and last ordering is a logical ordering on -terms. We state it here in less general
terms than in [6, 5].

Definition 7 ( -term Entailment) A -term entailsa -term 0 if and only if,as constraints,
 implies the conjunction of 0 and X :

= X0; more precisely,

 �  0 iff j=  ! 9U (X :
= X0 &  0)

where X, X0 are the roots of and 0 andU = Var( 0).

It is again sufficient to state the validity of the implication in the OSF-algebra only (namely,
using j=). This is not true in the more general wording and holds here only because the
constraints are obtained by dissolving -terms and their root variables are bound together.

Proposition 2 (Semantic Transparency of Orderings) The following are equivalent:

�  v  0  is an approximation of 0;
�  0 �   0 is a subtype of ;
�  0 �   entails 0;
� [[ ]] � [[ 0]] the set of -terms filtered by is contained in that filtered by 0.

The following two propositions are straightforward. Let 1 and 2 be two -terms with
variables renamed apart;i.e., such thatVar( 1)\Var( 2) = ;. LetX1 andX2 be their respective
root variables. Let� be the normal form of the OSF-constraint 1 &  2 & X1

:
= X2.

Proposition 3 ( -Term Unification) The normal form� is thefalseconstraint if and only if
[[ 1]]A \ [[ 2]]A = ;, for all OSF-algebrasA. Otherwise,� is the conjunction of equality
constraints and of the dissolved version of some -term . This -term is the�-GLB of 1
and 2 up to variable renaming; i.e.,[[ ]]A = [[ 1]]A \ [[ 2]]A.

Proposition 4 (v-LUB of two  -terms) The -term above is approximated by both 1
and 2 and is the least -term forv (i.e., approximating all other ones) with this property.
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4 Entailment and disentailment of OSF-constraints

This section deals formally with all the apparatus presented and used informally in Section 2.2.

In the following, we use� as thecontextformula. It is assumed to be anOSF-constraint in
solved form, although not necessarily coming from dissolving a single -term. The variables
in � areglobal. We shall useX to designate the set of global variablesVar(�) and the letters
X, Y, Z, . . . , for variables inX . We use , a dissolved -term, as theguard formula. The
variables in arelocal to ; i.e., Var(�)\ Var( ) = ;. We shall useU to designate the set of
local variablesVar( ) and the lettersU, V, W, . . . , for variables inU . The letterU will always
designate the root variable of . We also refer to� as theactualparameter, and to as the
formal parameter. By extension, we will often use the qualifiers global/local, actual/formal,
and context/guard, with all syntactic entities;e.g., variables, formulae, constraints, or sorts.

We investigate a proof system which decides two problems simultaneously:

� the validity of the implication8X
�
�! 9U : ( & U :

= X)
�
;

� the unsatisfiability of the conjunction� &  & U :
= X.

The first test is called a test forentailmentof the guard by the context, and the second, a
test fordisentailment. This second test is equivalent to testing the validity of the implication
8X

�
�! :9U : ( & U :

= X)
�
.

Since both tests amount to deciding whether the context implies the guard or its negation, all
local variables are existentially quantified and all global variables are universally quantified.

The relative-simplificationsystem for OSF-constraints is given by the rules in Figures 4, 5,
and 6. An OSF-constraint simplifies to 0 relatively to� by a simplification rule� if  

 0 is
an instance of� and the applicability condition (on� and on ) is satisfied. We say that 
simplifies to 0 relatively to� if it does so in a finite number of steps.

The relative-simplification system preserves an important invariant property:a global variable
never appears on the left of a variable equality constraint in the formula being simplified.
Thus, an equalityU :

= X is a directed relation binding the local variableU to the global
variableX. Furthermore, a global variable is never eliminated by a local one, orvice versa.

A set of bindingsUi
:
= Xi, i = 1; . . .; n is a functional bindingif all the variablesUi are

mutually distinct.

The effectuality of the relative-simplification system is summed up in the following statement:

Effectuality of relative-simplification The solved OSF-constraint� entails
(resp., disentails) the OSF-constraint9U: (U :

= X &  ) if and only if the normal
form 0 of  & U :

= X relatively to� is a conjunction of equations making up a
functional binding (resp., is thefalseconstraint 0 = ?).
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Feature Decomposition:

(F.1)
 & U:`

:
= V & U:`

:
= W

 & U:`
:
= V & W

:
= V

Relative Feature Decomposition:

(F.2)
 & U

:
= X & U:`

:
= V

 & U
:
= X & V

:
= Y

if X:`
:
= Y 2 �

Relative Feature Equality:

(F.3)
 & U

:
= X1 & U

:
= X2 & V

:
= Y1

 & U
:
= X1 & U

:
= X2 & V

:
= Y1 & V

:
= Y2

if X1:`
:
= Y1 2 �, X2:`

:
= Y2 2 �

and V
:
= Y2 =2  

Variable Introduction:

(F.4)
 & U

:
= X1 & U

:
= X2

 & U
:
= X1 & U

:
= X2 & V

:
= Y1 & V

:
= Y2

if X1:`
:
= Y1 2 �, X2:`

:
= Y2 2 �

and Y1 =2 Var( ) and Y2 =2 Var( )
where V is a new variable

Figure 4. Simplification relatively to�: Features

There are two technical remarks to be made. Firstly, observe that in our formulation of the
entailment/disentailment problem, the implication containsonly oneequalityU :

= X binding
only oneglobal variable. However, this is not a restriction. EquationsU1

:
= X1; . . .;Un

:
= Xn

can be equivalently replaced by addingX1
:
= X:1 & . . . & Xn

:
= X:1 to the context� and

U1
:
= U:1 & . . . & Un

:
= U:n & U :

= X to  , whereX andU are new. That is, one obtains
the conjunction of one equalityU :

= X and a guard which, again, is a dissolved -term.

Secondly, the fact that is a dissolved -term rooted inU ensures that the test of entailment of
 & U :

= X by � does not depend on whether the implication holds inall OSF-interpretations,
or only in , or T . This is not necessarily so ifU is not the root of . Indeed, let us
assume thatU is not the root of ; for example, take to be V:` :

= U. Clearly, while
8X

�
> ! 9U9V ( & U :

= X)
�

holds in andT , it does not hold in all OSF-algebras where it
is not guaranteed that every element is the`-image of some other element. In (andT ), this is
the case since any elementX is the`-image of at least one element; namely,>(`) X).

Effectuality of relative-simplification is the central result of this section. We now proceed
through the technical details aimed at establishing its claim in the form of two theorems:
Theorem 2 and Theorem 3.
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Sort Intersection:

(S.1)
 & U : s & U : s0

 & U : s^ s0

Sort Containment:

(S.2)
 & U

:
= X & U : s

 & U
:
= X

if X : s0

2 �, and s0 � s

Sort Refinement:

(S.3)
 & U

:
= X & U : s

 & U
:
= X & U : s^ s0

if X : s0 2 �, and ŝ s0 < s

Relative Sort Intersection:

(S.4)
 & U

:
= X & U

:
= X0

 & U
:
= X & U

:
= X0 & U : s^ s0

if X : s2 �, X0 : s0 2 �,
s^ s0 < s, s^ s0 < s0,
and U : s00 =2  , for any sort s00

Sort Inconsistency:

(S.5)
 & U : ?

?

Figure 5. Simplification relatively to�: Sorts

Relative Variable Elimination:

(E.1)
 & U

:
= X & V

:
= X

 [U=V] & U
:
= X & V

:
= X

if V 2 Var( ), V
:
= X =2  ,

and U 6= V

Equation Entailment:

(E.2)
 & U

:
= X & U

:
= Y

 & U
:
= X

if X = Y or if X
:
= Y 2 �.

Figure 6. Simplification relatively to�: Equations
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4.1 Termination of relative simplification

For the purpose of showing that the relative simplification rules always terminate, we introduce
an additional set of rules shown in Figure 7 extending basic simplification. These rules are
not meant to be used in the effective operation of basic simplification, but only serve in our
proof argument. The idea is that relative simplification of a guard relatively to a context�
can be “simulated” by normalizing the formula� &  & U :

= X using basic simplification
(Figure 3) together with the rules of Figure 7. It is not a real simulation, however, as
Rules (B.1)–(B.5) have for side effect to destroy the context. The point is that one application
of a relative simplification rule can be made to correspond to at least one application of one of
Rules (B.1)–(B.5), (X.1)–(X.3). Since this latter system can be shown to terminate, then so
can relative simplification.

Rules (X.1)–(X.3) perform essentially the same work as Rules (B.1) and (B.2) except that they
do no erase parts of the formula. In Rule (X.1), we denote by� :

=

the reflexive, symmetric
and transitive closure of:= (that is, the equivalence relation on the variables occurring in the
constraint which is generated by the:=-pairs between variables in the constraint).

Extended Feature Decomposition:

(X.1)
 & U:`

:
= U0 & U:`

:
= U00

 & U:`
:
= U0 & U:`

:
= U00 & U00

:
= U0

if U 0 6� :
=

U00

Extended Sort Intersection 1:

(X.2)
 & U : s & U : s0

 & U : s & U : s ŝ 0

if s^ s0 < s00 for any s00

such that U: s00 2  

Extended Sort Intersection 2:

(X.3)
 & U : s & U : s0

 & U : s & U : s0 & U : s ŝ 0

if s^ s0 < s00 for any s00

such that U: s00 2  

Figure 7. Rules extending basic simplification

Lemma 1 The extended basic-simplification rules (B.1)–(B.5), (X.1)–(X.3) define equivalence
transformations; furthermore, they are terminating.

Proof: The first statement is clear. The proof of the second statement is an extension of the
termination proof of the basic simplification rules (B.1)–(B.5) from [6, 5]: (X.1) can be applied
only a finite number of times, since the number of equivalence classes partitioning the finite set of
variables occurring in the constraint which is to be simplified decreases by1 with each application.
(X.2) and (X.3) can be applied only a finite number of times, since they can be applied at most once
for every sort occurring in the constraint which is to be simplified.
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Lemma 2 Let  & U :
= X simplify to 0 relatively to� by a relative-simplification step not

using Rule (F.4). Then,� &  & X :
= U simplifies to�0 &  00 by at most one extended

basic-simplification step and a finite number of variable elimination (B.3), where 0 and 00

are equal up to variable renaming.

Proof: It can be seen that each relative simplification rule, except for (F.4), corresponds to
one or several extended basic-simplification rules. Rules (F.1)–(F.3) correspond to Rules (B.1)
and (X.1). Rules (S.1)–(S.4) correspond to Rules (B.2), (X.2) and (X.3). Rules (E.1)–(E.2)
correspond to Rule (B.3). This, and the fact that extended basic-simplification rules are equivalence
transformations, allow us to conclude.

Lemma 3 Let  simplify to 0 of the form & U1
:
= X1 & U1

:
= X2 by an application of

Rule (F.4) relatively to�. Then, & U1
:
= X1 simplifies to the same constraint 0 by an

application of Rule (F.3) relatively to�.

Proposition 5 The relative-simplification rules are terminating.

Proof: This is proved by induction onn, using Lemma 2 and Lemma 3. For every relative-
simplification chain 1 & U1

:
= X1; . . .;  n & Un

:
= Xn relatively to�, there exists an extended-basic

simplification chain of lengthn + k, wherek �0. This chain starts with the basic constraint
� &  & X1

:
= U1 & X

:
= U, whereX

:
= U stands for the equations we have added so that each

global variableX is bound to some local variableU (which, if necessary, is chosen new).

Since, according to Lemma 1, extended-basic-simplification chains are finite, so are relative-
simplification chains.

4.2 Correctness and completeness

We first note another consequence of the lemmata of the last section. LetV stand for the new
local variables introduced by Rule (F.4).

Proposition 6 Let  & U :
= X simplify to 0 relatively to�. Then,� &  & U :

= X and
9V : (� &  0

) are equivalent.

Proof: Let us first assume that & U
:
= X simplifies to 0 relatively to�, not using Rule (F.4).

Then,� &  & U
:
= X and� &  0 are equivalent by Lemma 1 and Lemma 2. Let & U

:
= X

simplify to & U
:
= X & V

:
= X1 & V

:
= X2 relatively to�, by an application of Rule (F.4). Clearly,

� &  & U
:
= X and� & 9V: ( & U

:
= X & V

:
= X1) are equivalent. Thus, with Lemma 3, we can

apply the first part of the proof on & U
:
= X & V

:
= X1.

The next corollary states a property which is important for showing that relative simplification
can be used for proving entailment, theinvariance property.

Corollary 1 (Invariance of Relative-Simplification) If  & U :
= X simplifies to 0 relatively

to �, then9U : (� &  & U :
= X) and9U9V : (� &  0

) are equivalent.
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It is helpful to list systematically the normal-form properties of the relative-simplification
system.

Proposition 7 The constraint is in normal form relatively to� if and only if the following
conditions are satisfied:

�  is in solved-form;

� a global variable X may occur in only in the form :
= X;

� if X :
= 2 �, then X does not occur in ;

� if V :
= X 2  , and :

= X:` 2 �, then :
= V:` 62  ;

� if V :
= X 2  , and X: s2 �, and V: s0 2  , then s0 < s;

� if
V :
= X;

V :
= Y

2  , and
X0

:
= X:`;

Y0
:
= Y:`

2 �, then
W :

= X0;

W :
= Y0

2  ,

for some variable W;

� if
V :
= X;

V :
= Y

2  , and
X : s1;

Y : s2
2 �, then V: s2  ,

for some sort s such that s� s1 and s� s2.

Proof: by inspection of the relative-simplification rules.

Proposition 8 Let 0 be a normal form of & U :
= X relatively to�. Let�0 be the constraint

obtained from� eliminating all redundancies according to the rules of Figure 8, and removing
bindings V :

= of new variables introduced by (F.4). Then, the constraint�0 &  0 is a
solved-form of the constraint� &  & U :

= X, up to variable renaming.

Proof: According to Proposition 6,� &  & U
:
= X is equivalent to9V: � &  0, whereVstands

for the new variables. According to the last three conditions of Proposition 7, Rules (R.1), (R.2)
or (R.3) perform equivalence transformations. Thus, if applications of these rules modify�0 to �00,
then�0 &  0 is equivalent to�00 &  0.

According to the first four conditions of Proposition 7,�00 &  0 is in solved-form up to variable
eliminations via Rule (B.3). More precisely, these variable eliminations are applications of Rule (B.3)
using new equations of the formV :

= X introduced by Rule (F.4). They produce possibly equations of
the formX

:
= Y between global variables; then, further variable eliminations consist of applications

of Rule (B.3) using these new equations. As a last step, these new equations are removed in order
to obtain a constraint which is exactly equivalent to� &  & U

:
= X, and not just up to existential

quantification of new variables.

Corollary 2 If the normal form of & U :
= X relatively to� is not?, then� &  & U :

= X
is satisfiable.
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Redundant Sort Elimination:

(R.1)
� & X : s

�

if U
:
= X 2  , and

U : s0 2  for some s0 � s

Redundant Feature Elimination:

(R.2)
� & X0

1
:
= X1:` & X0

2
:
= X2:`

� & X0

1
:
= X1:`

if U
:
= X1 2  , U

:
= X2 2  

Entailed Sort Redundancy Elimination:

(R.3)
� & X1 : s & X2 : s

� & X1 : s
if U

:
= X1 2  , U

:
= X2 2  

Figure 8. Redundancy elimination rules

Proof: In [6, 5] we showed that a constraint is satisfiable if and only if it has a solved-form; that is,
its basic normal form is different from?. The statement then follows from Proposition 8.

Theorem 2 (Disentailment) Let 0 be a normal form of & U :
= X relatively to�. Then,�

disentails9U : ( & U :
= X) if and only if 0

= ?.

Proof: If  0
= ?, then8X(� !:9U9V:  0

) is valid. From Corollary 1, it follows that
8X(� !:9U:  & U

:
= X) is valid, too. If 0

6= ?, then Corollary 2 can be applied.

Proposition 9 If the normal form 0 of  & U :
= X relatively to� is not a conjunction of

equations representing a functional binding, then� & :9U : ( & U :
= X) is satisfiable.

Proof: The assumption on the form of 0 means that one of the three following cases is true, for
someV 2Var( 0

) bound to someX 2Var(�); i.e., V
:
= X 2 0.

�[(1)]  0 contains a sort constraint onV; say,V : s; or,
�[(2)]  0 contains two equations onV; say,V

:
= X & V

:
= Y; or,

�[(3)]  0 contains a feature constraint onV, say,V:` := W.

For each case, we can find a constraint�0 such that� & �0 is satisfiable and disentails 0. Then,
� & �0 also disentails9U: ( & U

:
= X); i.e., � & �0

!:9U: ( & U
:
= X) is valid. Clearly, this

is sufficient to show that� & :9U: ( & U
:
= X) is satisfiable.

(1) V : s 2 0; then, according to the third condition of Proposition 7,� contains either no sort
constraint onX or one of the formX : s0 wheres< s0. Thus, we set�0

= X : s00, in the first case, for
some sorts00 incompatible withs; i.e., such thats ŝ 00

= ?. In the second case, we chooses 00 such
thats ŝ 00

= ?ands 00
�s 0.

(2) V
:
= X & V

:
= Y 2 0; then, eitherV : s 2 0 and we are in Case (2), or, according to the last

condition of Proposition 7, at most one ofX andY is sorted in�. If Y : s2�, we set� 0
= X : s0 for
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some sorts0 such thats ŝ 0
= ?. If none ofX andY is sorted in�, we set� 0

= Y : s & X : s0 for
some sortss; s0 such thats ŝ 0

= ?.

(3) V:`1
:
= V1 2 

0; then, � contains no feature constraintX:`1
:
= , according to the fourth

condition of Proposition 7. Without loss of generality, we can assume that does not contain
redundant conjuncts.12 There exists a sorts such that contains a conjunct of the form:
V:`1

:
= V1 & V1:`2

:
= V2 & . . . & Vn�1:`n

:
= Vn & Vn : s, for somen �1. Thus, we set

�0 = X:`1
:
= X1 & X1:`2

:
= X2 & . . . & Xn�1:`n

:
= Xn & Xn : s0, for some new variablesX1; . . . ;Xn

and some sorts0 such thats ŝ 0

= ?.

Theorem 3 (Entailment) Let  0 be a normal form of relatively to�. Then,� entails
9U : ( & U :

= X) if and only if 0 is a functional binding. Moreover,� &  0 is a solved
OSF-constraint.

Proof: If  0 is a conjunction of equations representing a functional binding, then9U9V:  0 is valid;
thus, so is� !9U9V:  0. By invariance of relative simplification (Corollary 1), it follows that
� !9U:  is valid, too.

If  0 has a different form then, either 0 = ?, or  0 contains conjuncts that are not a functional
binding. The fact that� !9U:  is not valid is trivial in the first case. In the other case, since the
context� is always assumed in solved form and, thus, satisfiable, then it follows from Proposition 9.

Corollary 3 Let 0 be the relative-simplification normal form of & U :
= X relatively to�.

Then, the context entails the guard if and only if the conjunction� &  0 is the solved-form of
the conjunction� &  & U :

= X.

Proof: This is an immediate consequence of Theorem 3 and Proposition 8.

4.3 Independence

The following theorem states that the OSF-constraint system has the independence prop-
erty [19]. It is well-known that in any constraint system with this property it is possible
to solve constraints which are conjunctions of constraints and negated constraints by testing
entailment. Namely,� & :9U1 1 & . . .:9Un n is satisfiable if and only if� does not entail
9Ui :  i, for everyi = 1; . . .; n. Here9Ui abbreviates the existential quantification of variables
in Var( i)� Var(�).

Clearly, � entails9Ui :  i if and only if � entails9Ui9Ui :  i[Ui=Xi] & Ui
:
= Xi, where

we introduce a new variableUi for every Xi 2 Var(�) \ Var( i). Hence, given that the

12That is, we assume that every variable in has at least one sort constraint and that redundant constraints in 

are removed. A redundant constraint in is one of the formX:`
:
= Y & Y : > whereY does not occur elsewhere

in  . Since we interpret features as total functions, this is not a proper restriction: redundant constraints can be
moved into the functional expression or the body of the guarded clause without changing the declarative or the
operational semantics. On the other hand, if this assumption is fulfilled, then the entailment of & U

:
= X by �

does not depend on whether features are interpreted as total or partial functions.
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independence property holds, we can use the relative-simplification algorithm in order to
check satisfiability of conjunctions of positive and negative OSF-constraints.

For the formulation of the theorem, let us make a few assumptions that do not incur any
loss of generality. First, we assume thatUi = Var( i), Ui 2 Ui , andVar(�) \ Var( i) = ;.
Second, since they correspond to different existential quantification scopes, we will assume
Ui \ Uj = ; for i 6= j. Finally, we again assume that i does not contain redundant constraints
(cf., Footnote 12 on Page 33).

Theorem 4 (Independence) A constraint � entails the disjunction of the constraints
9Ui : ( i & Ui

:
= Xi), for i = 1; . . .; k, if and only if it entails one of them.

Proof: The if-direction is trivial. It is sufficient to show that if� & :9U i: ( i & Ui
:
= Xi) is

satisfiable for everyi, then� &
V

i=1;...;k:9U i: ( i & Ui
:
= X) is satisfiable.

Extending the proof technique of Proposition 9, we will find a constraint�0 such that� & �0

is satisfiable and disentails 0i , for all i = 1; . . .; k. As a consequence,� & �0 also disentails
9U i: ( i & Ui

:
= Xi). That is,� & �0 !:9U i: ( i & Ui

:
= Xi) is valid. Clearly, this shows that

� &
V

i=1;...;k:9U i:  i & Ui
:
= X is satisfiable.

According to Theorem 3, if� & :9U i: ( i & Ui
:
= Xi) is satisfiable, then 0i , the normal form of

 i & Ui
:
= Xi relatively to� is not a conjunction of equations representing a functional binding.

Thus, one of the three following cases is true, for someVi 2Var( 0

i ) bound to someXi 2Var(�);
i.e., Vi

:
= Xi 2 

0

i :

�[(1)]  0

i contains a sort constraint onVi ; say,Vi : si ; or,
�[(2)]  0

i contains two equations onVi ; say,Vi
:
= Xi & Vi

:
= Yi ; or,

�[(3)]  0

i contains a feature constraint onVi , say,Vi:`i
:
= Wi .

(1) If Vi : si 2 
0

i , then� contains either no sort constraint onXi or one of the formXi : s0i where
si < s0i , according to the third condition of Proposition 7. LetUij

:
= Xi , for i j = 1; . . .;m, be the

family of all equations occurring in the disjuncts binding a local variableUij
to that same global

variableXi . We add to� the sort constraintXi : s00i wheres00i is some sort which is incompatible with
those in the sort constraintsUij : sij , and, in caseXi : s0i 2�, is furthermore a subsort ofs 0

i , s00i �s
0

i .

(2) If Vi
:
= Xi & Vi

:
= Yi 2 

0

i , andVi : si 62 
0

i (otherwise we are in Case (2)), then we add to�0 the
conjunctsXi :`i

:
= Zi & Zi 2s & Y i:`i

:
= Z0i & Z0i 2s

0. Heres ands0 are two incompatible sorts, and
the`i ’s are pairwise different features which do not occur in� and i , for i = 1; . . .; k.

(3) Finally, we consider the setI of all indicesi, i = 1; . . .; k, for which Case (3), but neither Case (1)
nor Case (2) applies. Thus, fori 2I,  0

i contains a feature constraint of the formVi:`i
:
= V1

i .
According to our assumption this constraint is not a redundant conjunct;i.e., there exists a sortsi

such that i contains, in fact, a conjunct of the form:

Vi:`i
:
= V1

i & V1
i :`

2
i
:
= V2

i & . . . & Vn�1
i :`n

i
:
= Vn

i & Vn
i : si ;

for somen �1:We add to� 0 the conjunct:

Xi:`
1
i
:
= X1

i & X1
i :`

2
i
:
= X2

i & . . . & Xn�1
i :`n

i
:
= Xn

i & Xn
i : s0i ;
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for some new variablesX1
i ; . . . ;Xn

i and for some sorts0i incompatible withsi .

If there are several disjuncts 0ij with exactly the same chain of feature constraints starting in a

variable bound to the same global variable, thens0i must be chosen to be incompatible with the sorts
in all of these chains. More precisely, if, fori j = 1; . . .;m, the disjunct 0ij contains the conjunct:

Vij
:`i

:
= V1

ij
& V1

ij
:`2

i
:
= V2

ij
& . . . & Vn�1

ij
:`n

i
:
= Vn

ij
& Vn

ij
: sij

;

thens0i is chosen as some sort such thatsij ŝ 0

i = ?for all i j , i j = 1; . . .;m.

5 A general residuation framework

Constraint Logic Programming (CLP) [18], the guarded Horn-clause scheme of Maher
(ALPS) [20], Concurrent Constraint Programming (CCP) [23], and Kernel Andorra Prolog [15]
(KAP) are recent logic programming frameworks that exploit the separation of relational
resolution and constraint solving. They do so to a full extent by being parameterized with
respect to an abstract class of constraint systems. In addition, ALPS, CCP, and KAP require
a test for entailment and disentailment between constraints. This is needed for advanced
control mechanisms such as delaying, coroutining, synchronization, committed choice, and
deep constraint propagation. LIFE [6] is a CLP language using a constraint system based on
order-sorted feature structures augmented with effective functional dependencies. Evaluating
functional dependencies involves constraint entailment/disentailment since passing arguments
to functions is done bymatchingas opposed to unification. Thus, LIFE employs a related, but
limited, suspension strategy to enforce deterministic functional application.

In this work, extending the guarded Horn-clause scheme of Maher [20], we present an
operational and denotational semantics of the generalresiduation schemeused, in a particular
way, in LIFE.

The technique of residuation—delaying reduction and enforcing determinism by allowing only
equivalence reductions—does not have to be limited to functions. Therefore, we explain it for
the general case of relations. Intuitively, the arguments of a relation which are constrained by
the guard are its input parameters and correspond to the arguments of a function.

Our scheme defines the denotational and operational meaning ofguarded Horn-clauses,as
formulated by Maher, using logical formulae calledguarded rules. More precisely, a collection
of n guarded Horn-clauses turns out to be syntactic sugar for the conjunction ofn + 1 guarded
rules. The quantification of the local variables (of the guard and the rule body) and their
binding to global variables (of the context) turns out to be crucial for this formalism (cf.,
Section 5.1).

We introduce acompatibility conditionfor guarded rules relaxing the requirement of Maher
that the guards of one relation should be mutually exclusive. While this requirement is not
part of the general ALPS scheme, it is essential for its completeness results. The compatibility
condition is shown to be necessary and sufficient for the existence of a model of guarded
Horn-clauses;i.e., of the corresponding conjunction of guarded rules defining a relation.
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Since adding guarded rules promotes determinate reduction, the possibility of doing so with
possibly overlapping guards is important for efficiency. For example, theand predicate on
three Boolean arguments can be specified with11guarded rules, instead of just two.

In contrast with our semantics, the scheme of Maher seesguardedHorn-clauses as defining a
relationr by considering them as simple Horn-clauses;i.e., by ignoring the operational meaning
of the guard. This amounts to using Clark’s completion, yielding adefinite equivalence[10].
In the scheme of Smolka [24], a relationr is first defined by a definite equivalence defining
the semantics of this relation, and only then guarded rules are added, helping to enforce
deterministic derivations. Our improvement here is that one can define a predicate solely by
ALPS guarded Horn clauses (i.e., the corresponding guarded rules). Also, our guarded-rule
reduction scheme extends the one of Smolka. Namely, it avoids useless redundancies in
the syntactic formulation of guarded rules, as well as in the operational semantics as will be
explained next.13

In every guarded-clause language, a resolution step produces a new environment; namely, the
conjunction of the old environment, which is the constraint part of the resolvent (the context),
and the guard. This conjunction affects the variables in the body (viz., in LIFE, the right-hand
side expression of a function definition) after successfully executing the corresponding guard;
i.e., it “constrains” them in a semantical sense.

For example, if (in the Herbrand constraint system)Y = f (a) is the context andY = f (X) is the
guard andZ = X is the body, thenX is constrained to be equal toa. Practically, the matching
proof is done by unification which yields theinstantiationof the body variableX, X = a. In
order to compute the new environment, this unification is, of course, not repeated.

The example above can be generalized to constraint systems where the proof of the en-
tailment/disentailment of the guard can be done by a new operational method that we call
incrementalrelative simplificationof the guard with respect to the context. In this method, the
proof of entailment has as a consequence (somewhat like a side-effect) that the conjunction
of the context and the guard is in solved form, as if normalized by the constraint solver. For
example, relative simplification of the guardY = f (X) relatively to the contextY = f (a) yields
the constraintX = a. Hence, we say that an occurrence of the variableX in the body is then
instantiated.

In contrast with Maher’s and Smolka’s, our scheme captures the practically relevant case where
the variables in the body are already instantiated (in the operational sense above) through the
corresponding guard’s entailment proof. In particular, as made explicit in Section 4 this applies
to the order-sorted feature (OSF) constraint system used in LIFE. So, one thing our scheme
brings out formally is the justification and accommodation of the implementer’s natural idea
that repeated constraint-solving work should be avoided.

Independently of its benefits when used in a guarded language, relative simplification is
an implementation strategy for entailment/disentailment proofs. As such, it formalizes and

13We mean “useless redundancy,” not as a pleonasm, but as a deliberate opposition to “useful redundancy”
serving a pragmatic purpose;cf., Footnote 17.
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justifies the standard approach of proving matching by doing unification and checking the
bindings. Furthermore, it is operationally more powerful since it is incremental;i.e., no
redundant work is done. For example, the test of matching through unification isnot
incremental; bindings of global variables are effected for each test and have to be undone
afterwards.

This section is organized as follows. In Section 5.1, we present our formulation of guarded
Horn-clauses and guarded rules and establish their operational and denotational semantics.
In Section 5.2, we briefly consider incremental relative-simplification systems in general.
We exhibit some properties which indicate how they might be constructed from a unification
system, or more generally, from a constraint solver. In Section 5.3, we put the results of the two
previous sections together, to derive the operational semantics of residuation. In Section 6, we
show the use of the general scheme on the specific instance of LIFE’s functional applications.

5.1 Guarded Horn-clauses and guarded rules

We assume a ranked alphabetR of relational symbols. A relational atom is an expression of
the formr(X1; . . .;Xn) where2 R and theXi ’s are mutually distinct variables.

Also, we assume a class of logical formulae (called constraints, noted�,  , . . . , closedunder
conjunction and including thefalseconstant?) and a model or a class of models (possibly
specified by axioms), to which satisfiability and validity will refer in the following.

A guarded Horn-clauseis of the formH : - G
��

B:, whereH, the head, is a relational atom;
G, the guard, is a constraint formula; and,B, the body, is of the formR & �, whereR, the
relational part, is a (possibly empty) conjunction of relational atoms, and�, the constraint
part, is a (possiblytrue) constraint formula. In the case of constraint systems with a relative
simplification system, the guardG can be a conjunction of positive and negated constraints.
We first consider the case whereG is a conjunction of positive constraints.

Here is an example of a guarded Horn-clause defining deterministic list concatenation:

concat(X;Y;Z) : - X : nil
��

Y :
= Z:

concat(X;Y;Z) : - X : cons& X:hd :
= H & X:tl := T

��
Z : cons& Z:hd :

= H & Z:tl := L & concat(T;Y; L):

Since any constraint system can be trivially augmented to express tuples,14 we may assume
the relational symbolr in the head to be a unary predicate. This amounts to replacing
r(U1; . . .;Un) : - G

��
B with r(U) : - U :

= (U1; . . .;Un) & G
��

B. Here, the constraint
with tuple notationU :

= (U1; . . .;Un) is just a shorthand for the specific constraint encoding
multiple arguments in the system being considered. For instance, in our OSF-constraint
system,U :

= (U1; . . .;Un) stands forU:1 :
= U1 & . . . & U:n :

= Un.

14Although doing so may increase significantly its expressive power, this is not important in the context of this
presentation. Indeed, our considering only unary relations is not properly restrictive, but essentially a notational
convenience.
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A guarded ruleis a logical sentence of the form:

8U8U :
�

G !
�

r(U) $ 9V : B
� �
:

It is important to note that the existential quantification9V of the variables local to the body
maynotbe pulled out;i.e., the guarded rule may not be written(8)

�
G !

�
r(U) $ B

��
.

Let H = r(U) where r 2 R and U is a variable. LetU = Var(G) � fUg and V =

Var(B)� (U [ fUg). Then, the guarded Horn-clauseH : - G
��

B corresponds to the above
guarded rule.15

For example, the guarded rules corresponding to our foregoing definition ofconcatare:

8U8X:
�
(U:1 :

= X & X : nil) !�
concat(U) $ 9fY;Zg: (U:2 :

= Y & U:3 :
= Z & Y :

= Z)
��
:

8U8fX;H;Tg:
�
(U:1 :

= X & X : cons& X:hd :
= H & X:tl := T) !�

concat(U) $ 9fY;Z; Lg: ( U:3 :
= Z & Z : cons& Z:hd :

= H & Z:tl := L &
U:2 :

= Y & concat(T;Y; L) )
� �
:

In the first rule, the variableX does not occur in the rule’s body; thus, we can write it:

8U:
�
9X: (U:1 :

= X & X : nil) !�
concat(U) $ 9fY;Zg: (U:2 :

= Y & U:3 :
= Z & Y :

= Z)
� �
:

In the second rule, the scope of the variablesH andT extends over the guard and the body.

A (constrained) resolventR is a (possibly existentially quantified) formula of the formR & �,
whereR consists of a (possibly empty) conjunction of relational atoms, and�, its context, is
a (possiblytrue) constraint formula. In the following, we will consider only the derivation of
resolvents without quantification. Indeed, only the matrix of a quantified resolvent is rewritten
(adding possibly more quantifications).

We will call the variables inVar(R) global and denote them generically asX;Y;Z; etc. The
variables in a rule are calledlocal. Except for the case of explicit examples (e.g., concat),
local variables are generically namedU;V;W; etc. The variables that are local to the body
are within a quantification scope contained in that of those variables that are also in the guard.
Local and global variables will always be assumed distinct, by implicit renaming if necessary,
so as to avoid capture.

15It is interesting at this point to observe that our formulation of guarded rules is different from Smolka’s [24]
where the guarded rule above is written in the form:

8U:
�
9U : G !

�
r(U) $ 9U9V: (G & B)

� �
:

We will compare our formulation to Smolka’s in more detail in Section 5.3.
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The next proposition characterizes thereductionof a resolvent by application of a guarded
rule into an equivalent resolvent.

Proposition 10 Given the guarded rule:

8U8U :
�

G !
�

r(U) $ 9V : B
� �
;

the resolventR = R & r(X) & � is equivalent to the derived resolvent:

9U9U9V : (R & B & � & G & U :
= X);

if the context� of the resolvent entails the guard of the rule; i.e., if:

� ! 9U9U : (G & U :
= X)

is valid.

Proof: The entailment condition says that the context� is equivalent to its conjunction with the
instantiated guard,

� $� & 9U: 9U(G & U
:
= X)

$9U9U: (� & G & U
:
= X):

The resolventR = R & r(X) & � is equivalent to:

9U9U: (R & r(U) & � & G & U
:
= X):

Since the variableU and the variables inUare universally quantified, the guarded rule can be written
as :

�
r(U) & G

�
$9V: (B & G):

It follows thatR is equivalent to:

9U9U9V: (R & � & B & G & U
:
= X):

After the application of a rule, local variables become variables of the derived resolvent and
are, then (and only then), considered global.

Let us assume that the constraint� entails the guardG. Then, although� is equivalent to
9U9U : (� & G & U :

= X), the conjunctionB & � is generallynotequivalent to the quantified
formula 9U9U : (B & � & G & U :

= X). Namely, the guardG generally shares variables
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with the bodyB of the guarded rule. Roughly, the conjunction� & G & U :
= X provides the

instantiation of input parameters used in the bodyB of the guarded rule.16

We now consider the case of a guarded Horn-clause where the guard consists of a conjunction
of positive and negated constraints.

For example, the guarded Horn-clause:

concat(X;Y;Z) : - :(X : cons)
��

X : nil & Y :
= Z:

corresponds to theguarded rule:

8U:
�
:9X: (U:1 :

= X & X : cons) !�
concat(U) $ 9fY;Zg: (X : nil & U:2 :

= Y & U:3 :
= Z & Y :

= Z)
� �
:

Generally, the guarded Horn-clauseH : - G &
V

j=1;...;k:Gj
��

B: corresponds to the guarded
rule:

8U8U :
�

G &
^

j=1;...;k

:9Uj : Gj !
�

r(U) $ 9V : B
� �
: (1)

We will always assume that the setsUj = Var(Gj) � fUg are pairwise disjoint, as well as
disjoint fromU and fromV .

Proposition 11 Given the guarded rule (1), the resolventR = R & r(X) & � is equivalent
to the resolvent:

9U9U9V : (R & B & � & G & U :
= X);

if the context� of the resolvent entails the guard of the rule; i.e., if the implication:

� ! 9U9U : (G & U :
= X)

is valid and the conjunctions:

� & Gj & U :
= X

for j = 1; . . .; k are unsatisfiable.

16All conjuncts in the guard which donot share variables with the body of the guarded rule being applied, may
be omitted in the derived resolvent.
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Proof: The proof of Proposition 10 can be rephrased by replacingG with the new guard. Under the
entailment assumption, the context� is equivalent to� & :9U j : (Gj & U

:
= X), and sinceGj does

not share variables withB, B & � is equivalent toB & � & :9U j: (Gj & U
:
= X). This means that

the conjuncts:9U j : (Gj & U
:
= X) can be omitted from the derived resolvent.

The collection of the guarded Horn-clausesr(U) : - Gi

��
Bi with the same head in a

given program stands for the conjunction of the followingn + 1 guarded rules, where
Ui = Var(Gi)� fUg andVi = Var(Bi)�

�
Ui [ fUg

�
for i = 1; . . .; n:

8U8Ui :
�

Gi !
�

r(U) $ 9Vi: Bi
� �
;

for i = 1; . . .; n, and:

8U:
�
:9U1G1 & . . . & :9UnGn !

�
r(U) $ ?

� �
:

We assume the guardsGi to be of the general form, as in the guarded rule (1). In our examples,
then + 1stguarded rule (the “otherwise” rule) is always left implicit.

Whenever they are consistent, then + 1 guarded rules above define the predicater. This
follows from the next fact.

Proposition 12 The following formula is a logical consequence of the guarded rules which
stand for the guarded Horn-clauses r(U) : - Gi

��
Bi; (i = 1; . . .; n):

8U:
�

r(U) $
_

i=1;...;n

9Ui9Vi: (Gi & Bi)
�
: (2)

Proof: The proof for the -part of the formula is clear. For the!-part we consider the two cases
whether or not:r(U), and thereforer(U) $?, holds in an interpretation. In the first case, there
is nothing to show. In the second case, we use then + 1st guarded rule, the “otherwise” rule, by
contraposition.

It is important to observe that this is in contrast with [24], where, conversely, Formula (2) is
called adefinite equivalenceand the guarded rules must be its logical consequences.

Not every conjunction of guarded rules has a model. In fact, in order to be a model an
interpretation must satisfy the followingcompatibility condition:

n̂

i ; j=1

�
8U8Ui8Uj :

�
Gi & Gj ! (9Vi: Bi $ 9Vj : Bj)

� �
: (3)

This condition is trivially fulfilled if the guards are mutually exclusive.
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Proposition 13 Every model of the definite equivalence (2) and the compatibilitycondition (3)
is a model of the conjunction of the n+ 1 guarded rules of the form (1), and vice versa.

Proof: By (2), Gi & 9V i : Bi impliesr(U). If Gi & r(U) holds in an interpretation, then, by (2), there
exists somej such thatGj & 9V j : Bj holds. But then, by (3),9V i : Bi holds also. Then + 1st guarded
rule is an immediate consequence of (2). The other direction follows from Proposition 12 for (2) and
from combining the guarded rules pairwise for (3).

We call a model of a guarded Horn-clause program a model of the conjunctions of guarded
rules which stand for the collections of guarded Horn-clauses with the same head in the
program.

Corollary 4 If the compatibility condition is valid, then a guarded Horn-clause program has
a least model.

Proof: It is a well-known fact that a system of predicate definitions such as (2) has a least model
extending the model of the theory of the constraint domain (cf., [18, 17]). The statement then follows
from the assumption and Proposition 13.

For the sake of completely relating our approach to others, let us mention one idea which is
not (yet) implemented in LIFE. Given a program consisting of definite clauses, one can add
explicit guarded rules which are logical consequences of the program [24]. Now, assume a
relation r declared by the definite clausesr(X)  9Ui: �i & Ri , i = 1; . . .; k. Thus, the
completed form ofr is:

r(X) $
k_

i=1

�
9Ui : �i & Ri

�
:

Then, the following guarded rules are always immediate consequences of this definition:

:9U1: �1 & . . . & :9Ui�1: �i�1 &
:9Ui+1: �i+1 & . . . & :9Uk: �k !

�
r(X) $ 9Ui: Ri & �i

�

for i = 1; . . .; k. These guarded rules can be left implicit. Although semantically redundant,
these additions are of great pragmatic use for efficient reductions. In fact, adding them is
paramount to enabling the immediate reduction of a determinate goal;i.e., one whose definition
offers only one alternative in its context.17 This appears to be related to what has been quoted
to us as the “Andorra Principle” [15], a strategy of preferentially selecting goals which have
at most one alternative, and is a basic principle underlying the Andorra Model [22].

17This is an example of a useful redundancy;cf., Footnote 13.
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5.2 Incremental relative-simplification systems

If G is a guard of the general form, as in the guarded rule (1), and� is the context of a
given resolvent, then we say that the context entails the guard if the validity condition and the
unsatisfiability conditions in Proposition 11 are fulfilled. We say that the context disentails the
guard if the implication� ! :9U9U : (G & U :

= X) is valid, or if one of the implications
� ! 9U9Uj : (Gj & U :

= X) is valid, for j = 1; . . .; k. Again, disentailment is not the
negation of entailment;i.e., the two problems are not dual to each other. Thus, a guarded rule
system needs to carry out two different tests.

If the context� of a resolventR entails the guard, then the context of any resolvent derived
from R entails the guard, too. In other words, a context can only become stronger in each
derivation step;i.e., constraints are added as conjuncts. The same holds for disentailment.

If the context� neither entails nor disentails the guard, there might still be a derivative ofR
whose context entails, or disentails, the guard. This is why incrementality is important. In
the case where both tests fail, for the context� of the current resolventR, the proof which
has determined this will be continued by the proof for the strengthened context� & �0 of a
resolventR0 derived fromR, instead of starting from scratch. That is, the proof of the guard
“stalls” in the context ofR; the proof of the guard in the context ofR0 “resumes” it.

The following observation is useful for deriving an entailment test from a constraint normal-
ization system.

Proposition 14 The context� entails the guard G if and only if the conjunction� & (G & U :
=

X) is equivalent to� & G0 for some formula G0 such that G0 is valid.

Proof: If G0 is valid, then� !G 0 is also valid. Therefore,� is equivalent to� & G0. According to
the assumption,� & (G & U

:
= X) $� & G 0 is valid. Thus,� is equivalent to� & (G & U

:
= X).

This shows that� !9U9U(G & U
:
= X) is valid. For the other direction, it is sufficient to choose

G0

=

�
(G & U

:
= X) _:�

�
. Clearly, then� & (G & U

:
= X) is equivalent to� & G0, and alsoG0

is valid.

The ‘only if’ direction in this proposition is crucial for practical purposes. Given� andG, the
formulaG0 has to be effectively found, and its validity has to be effectively determined.

In what follows, � and  are two constraints where� is a context formula assumed be
consistent such thatVar( )\ Var(�) = ;.

Corollary 5 If the guard consists of a positive constraint, say , then the context entails the
guard, i.e.,� ! 9U9U : ( & U :

= X) is valid, if and only if the conjunction� &  & U :
= X

is equivalent to� &  0 for some formula 0 such that9U9U :  0 is valid.

Proof: The proof is a straightforward rephrasing of the previous proof.

Research Report No. 13 June 1991 (Revised, November 1992)



44 Hassan Aı̈t-Kaci and Andreas Podelski

The corollary gives the idea about how one generally intends to obtain the formulaG0 from
Proposition 14. Namely, by applying a suitable constraint normalization system on the
conjunct� &  & U :

= X successively, as long as this is possible, without modifying�.
Clearly, the main difficulty is completeness; that is, whether under entailment, one can actually
derive a constraint� &  0 such that9U9U :  0 is valid.

Corollary 6 The context� disentails the guard , i.e.,� ! :9U9U : ( & U :
= X) is valid

if and only if� &  & U :
= X is equivalent to� & ?.

Proof: We only need to note that if:

� & 9U9U: ( & U
:
= X) $� & 9U 0:  0

is valid, then also:

� & :9U9U: ( & U
:
= X) $� & :9U 0:  0:

Again, it is clear how one may try to obtain the disentailment proof. Namely, by applying
the constraint solver on the conjunct� &  & U :

= X successively, as long as this is possible
without modifying�, or until one arrives at� & ?. Again, the difficulty is completeness.
That is, whether under disentailment, one can actually derive? in this way.

Definition 8 We call a relative-simplificationsystem a reduction system which, given the
context-constraint� and the guard-constraint and the binding U:= X of the variable U in
 to the variable X in�, reduces & U :

= X to a constraint 0 with V = Var( 0

) � Var(�)
such that:

� 9V :  0 is valid if and only if� entails ; i.e.,� ! 9U9U : ( & U :
= X) is valid;

�  0

= ? if and only if� disentails ; i.e.,� ! :9U9U : ( & U :
= X) is valid.

Moreover, at each intermediate simplification step deriving a constraint 0 with V =

Var( 0

)� Var(�) the followingrelative-simplification invariantholds:

� � & 9U: ( & U :
= X) is equivalent to� & 9V :  0.

Proposition 15 (Confluence of Relative Simplification) Any relative-simplification system
can be transformed into an incremental one simply by closing the simplification relation with
respect to the following condition. If simplifies to 0 relatively to�, and simplifies to 00

relatively to� & �0, then also:

�  simplifies to 0 relatively to� & �0, and
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�  0 simplifies to 00 relatively to� & �0.

The statement says that any relative-simplification system can be assumed to be already
incremental.

Proof: The relative-simplification invariant still holds if one considers every simplification relatively
to � also a simplification relatively to� & �0. Namely, if � !( $ 0

) is valid, then so is
� & �0 !( $ 0

).

Generally, it is not evident how to transform the specification of a non-incremental relative-
simplification system (e.g., by rewrite-rules) into an incremental one (e.g., by adding or
modifying the rules). Our experience is limited to cases (essentially to the constraint systems
over finite or rational first-order [11, 13] or feature trees [7, 25]) where incrementality came
for free.

5.3 Operational semantics of residuation

We assume a constraint system with an incremental relative-simplification system as described
in the previous section. Let the relationr be specified byn guarded Horn-clauses, each of the
form r(U) : - G

��
B, corresponding ton+ 1 guarded rules, each of the form (1). Let the guard

G be of the form:

G =  0 &
^

j=1;...;k

:9Uj :  j:

Let us consider the hypothetical reduction of the resolventR = R & r(X) & � to the new
resolvent:

R0

= 9U
0

09V : (R & � & B &  0

0 &
^

j=1;...;k

:9U
0

j :  
0

j );

where the constraints j & U :
= X simplify to 0

j relatively to the context�, with Var( j) = Uj

andVar( 0

j )� Var(�) = U 0j for j = 0; 1; . . .; k.

Proposition 16 (Correctness of reduction) The reduction step from the resolventR to the
resolventR0 is always a correct reduction step:R0 implies R; i.e., all solutions ofR0 are
solutions ofR.

Proof: This follows from Proposition 12 and the relative-simplification invariant.

The reduction step from the resolventR to the resolventR0 is also a complete reduction step:
(with Proposition 16)R is equivalent toR0. Equivalently,
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Proposition 17 (Completeness of reduction) The solutions ofR0 are exactlythe solutions
of R, if:

� 9U 00:  
0

0 is valid, and,

�  0

j = ?, for each j= 1; . . .; k.

Then,R0 is equivalent to R& � &  0

0 & B.

Proof: This follows from Proposition 11 and the relative-simplification invariant.

In the case of relative-simplification systems based on constraint solvers (e.g., implementing
unification),� &  0

0 is already essentially the solved form of� &  0. This is the case for
OSF-constraints (cf., Section 4). That is, our scheme captures the practically important case
when the conjunction of the context and the guard has already been solved through the guard
proof.

For comparison, let us consider the guarded-rule reduction defined by Smolka in [24]. There,
the “commit condition” is that the conjunction of the context� and the negated guard: be a
constraint that simplifies to?, the inconsistent constraint. Under this condition, the resolvent
� & r(x) & R reduces to:�00 & R0 & R if the (renamed) guarded rule ! (r(X)$ �0 & R0

)

is used, and the constraint� & �0 simplifies to�00.

A consequence of this on the syntactic formulation of guarded rules is that, in Smolka’s
scheme, the part of the guard which constrains variables in the body must be repeated in the
constraint�0 in the body of the guarded rule. That is, the guarded rule:

8U8U :
�

G !
�

r(U) $ 9V : B
� �
:

must be written in the form:

8U:
�
9U : G !

�
r(U) $ 9U9V : (G & B)

� �
:

As a result, in Smolka’s operational semantics of guarded-rule reduction is that the simplifi-
cation of the constraint� & �0 does more work than is necessary after relative simplification.
Namely, it must repeat the simplification of the conjunction of the context and the guard.

Thus, for constraint systems with relative simplification, our formulation has an advantage
in efficiency, although it is semantically equivalent to Smolka’s. In our scheme, it is only
necessary to normalize the constraints inB, but not those inG, in conjunction with the
resolvent’s context in the case where that guarded rule is applied.

The next proposition considers the case of disentailment. Here, of course, no instantiation
is effectuated. It states that the reduction step from resolventR to the resolventR0 can be
excluded wheneverR0 is equivalent to?. Equivalently,
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Proposition 18 (Failure of reduction) The set of solutions ofR0 is empty, if:

�  0

0 = ?, or,

� 9U 0j :  
0

j is valid, for at least one of j= 1; . . .; k.

Proof: This follows from Proposition 12 and Definition 8.

The foregoing propositionsmight suggest several possibilities for fine details of the operational
semantics concerning resolvents with residuations;i.e., relational atomsr(X) for which none
of the guards of then + 1 guarded rules forr is entailed. The answer of the query could be
given by the residuated resolvent;i.e., with the relational atomr(X). Or, in order to make the
answer more refined, it could be given by the disjunction of all resolventsR0 which are not
equivalent to?.

The constraint part of such a resolventR0 can be further tested for satisfiability. Possibly,
it contains negated constraints. Assuming that the constraint system has the independence
property (cf., Theorem 4), such a constraint part can be tested for satisfiability by testing
entailment of each of the negated constraints by the positive constraint.

6 Functional application over  -terms

We now show how the foregoing general residuation scheme can be used to explain functional
application over -terms. A -term is a constrained data structure. Hence, as an expression, it
can be further constrained by being conjoined with other functional and relational constraints.
We will call such an expression aconstrained -term. For example,X : cons(tl ) T :
list) & length(T) := L & L : evenis a constrained -term specifying lists of odd length.

A constrained -term is an expression of the form & C where is a -term andC is a
possibly empty conjunction of OSF-constraints and relational atoms.18

In LIFE a functionf is defined by:

f (p1)! e1:
...

f (pn)! en:

wherep1; . . .; pn are -terms ande1; . . .; en are constrained -terms. We assume that the
variables occurring in each rulef (pi)! ei are different. We shall useUi for Var(pi) andVi for
Var(ei). Again, for ease of notation and without loss of generality, we consider only the case
of unary function symbolsf .

18The concrete syntax in LIFE for a constrained -term is: j C. This is read as “ such thatC.”
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The above form of function definition is in fact syntactic sugar for a collection ofn guarded
Horn-clauses of the form:

fr(U;V) : - U : pi &
i�1̂

j=1
:U : pj

��
V : ei :

for i = 1; . . .; n; and thus, as seen in the previous section, for a conjunctionn+1 guarded rules.
The symbolfr is a binary relation symbol associated tof . We shall also use the functional
constraint notationY :

= f (X) as sugaring for the relational atomfr(X;Y), and the constraint
Y : f (t) with the functional expressionf (t) as sugaring for9X: X : t & Y :

= f (X).

We have everything ready now, with the general scheme of residuation of Section 5, to explain
the operational semantics of functional reduction in LIFE as a matter of instance. Indeed, that
scheme is sufficiently general to account for argument matching seen as constraint entailment
and priority of rule order thanks to negative constraints imposing disentailment of previous
patterns.

We make this explicit in the form of the following two propositions. They are immediate
instances of Proposition 11 and Proposition 17, respectively.

Proposition 19 The resolvent& � & Y : f (t) is equivalent to the resolvent:

9X9Ui9Vi: R & � & X : t & Y : ei & X : pi

if the context� & X : t disentails the OSF-constraints X: pj for j = 1; . . .; i�1, and if it entails
the OSF-constraint X: pi. That is, if the conjunctions� & X : t & X : pj are unsatisfiable for
j = 1; . . .; i � 1, and the implication� & X : t ! 9Ui : X : pi is valid.

Proposition 20 If, for j = 1; . . .; i, the OSF-constraint X: pj simplifies to the OSF-constraint
 j relatively to� & X : t such that 1 = ?; . . . ;  i�1 = ?, and i is a functional binding,19

then the resolvent& � & Y : f (t) is equivalent to the resolvent:

9X9Ui9Vi: R & � & X : t & Y : ei &  i:

6.1 Functional application in the  -term calculus

Next, we express functional application in the framework of the calculus of subsumption and
unification of -terms.

We use a fact that follows directly from Proposition 2 and Proposition 3. Namely, the
implicationX : t ! 9Ui : X : pi is valid if and only if the -term t is subsumed by the -term

19Recall, from Section 4, that a functional binding is a conjunction of variable equalitiesUi
:
= Xi , i = 1; . . . ;n

where all the variablesUi are mutually distinct.
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pi. The OSF-constraintX : t & X : pi is unsatisfiable if and only if the -termt is non-unifiable
with the -termpi.

We will say that the equalityt := p between two -terms is satisfied under a valuation� in an
interpretationA, if and only ifA; � j= t := p iff [[ t]]A; = [[p]]A;�; i.e., if the two -terms have
the same denotation under�.

Proposition 21 If the  -term t is non-unifiable with the -terms p1; . . .; pi�1 and if it is
subsumed by the -term pi , then the functional expression f(t) is equivalent to the expression
ei constrained by t:= pi. Formally,

Y : f (t) $ 9Ui9Vi : Y : ei & t := pi (4)

is valid. If t is non-unifiable with the -terms p1; . . .; pn, then f(t) is equivalent to?.

Proof: The statement follows from Proposition 19 and the fact thatA; � j= 9X: (X : t & X : p i) if
and only ifA; � j= t

:
= pi .

6.2 Endomorphisms and functional application

We have related functional reduction to the view of -terms as constraints and as sets. In order
to be complete with respect to the three (logical, term-as-set, and algebraic) characterizations
of the information contents of -terms, we now give an algebraic characterization of functional
application as graph pattern-matching. This view generalizes the familiar notion of matching
by computing substitutions.

If a function is defined over first-order terms, say, in the formf (p) = e, then the function
applied to the termt yields the expression�(e) if the term t is matched by the patternp
via the matching substitution�; i.e., f (t) = �(e) if �(t) = p. This is not so obvious for
 -terms. Let us take, for example, the identity function on -terms, which is defined in
the form f (X : >) = (X : >). When applied to the -term t = (X : s(`) X0 : s)), the
function returns the same -term. However, this does not exhibit a substitution� such that
�(X : >) = (X : s(`) X0 : s)).

Recall that an approximation orderingv on  -terms is induced by the ordering on , the
OSF-graph algebra (cf., Section 3.5). An endomorphism
 is said to be principal in a set of
endomorphisms if for every endomorphism
0 in this set, there exists an endomorphism� such
that
 � � = 
0.

We define the application of an endomorphism on a constrained -term of the form =
 0 &

Vm
k=1

�
rk(Yk) & Yk :  k

�
by:


( ) = 
( 0) &
m̂

k=1

�
rk(Yk) & Yk : 
( k)

�
:
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Let f (p) ! e define the functionf , and let t be a -term such thatp v t. Let 
 be a
principal OSF-endomorphism among all those that mapp into t. The next proposition states
precisely the following fact: applying the rule means thatf (t) = f (
(p)) = 
(e) = 
(f (p)).
In other words, principal OSF-endomorphisms preserve functional application (i.e., functional
evaluation and OSF-approximation commute).

Proposition 22 If no  -term is approximated by both t and pj for j = 1; . . .; i � 1, and t is
approximated by pi, then the functional expression f(t) reduces to the -term
(ei), where

is a principal endomorphism mapping pi on t; i.e.,

f (t) = 
(ei); if 
(pi) = t: (5)

If no -term is approximated by both t and pi for i = 1; . . .; n, then the functional -term f(t)
is?.20

Proof: By Proposition 2, we know that the conditions in Proposition 22 on the OSF-graphs are
equivalent to the conditions in Proposition 21 on the corresponding -terms. In particular, this
implies the existence of the principal endomorphism
 with 
(pi) = t. From Propositions 3 and 4,
Page 25, we know thatX : t & X : pi is equivalent toX : 
(pi) & � where� is a functional binding
(of variables ofpi to variables oft). Moreover, the equivalence:

m̂

k=0

Yk :  k & X : t & X : pi $

m̂

k=0

Yk : 
( k) & X : 
(pi) & �

is valid. Now, if ei is of the form 0 &
Vm

k=1(rk(Yk) & Yk :  k), thenY0 : ei & X : t & X : pi is
equivalent to
(Y0 : ei) & X : 
(pi) & �. Up to existential quantification of new variables occurring
only in �, this formula is equivalent to
(Y0 : ei) & X : 
(pi). Thus, Equation (5) follows from
Proposition 21.

The proposition above justifies the intuition of functional application over -terms. The
variables of the patternpi in the function definition are instantiated by variables of the calling
term t, together with their sorts and their attached subterms, so thatpi becomes syntactically
equal tot; then the variables in the expressionei are instantiated accordingly, so thatei becomes
the expression which rewritesf (t).

The variables inei which are not shared by the patternpi must not be instantiated; this is the
reason why we require the endomorphism mappingpi on t to be principal.

For example, let the functionf be defined in the formf (U : >) ! U0 : >(`) U : >).
Applied to the -term t = X : s(`) X0 : s), the function returnsf (t) = U0 : >(`) (X :
s(`) X0 : s))). Here, the principal endomorphism
 maps(U : >) on (X : s(`) X0 : s)) and
is the identity elsewhere. In particular,
 does not unnecessarily refine the sort ofU0.

20Note that, in (5), we use the metalogical equal sign (=), as opposed to the logical one (
:
=). This means that

in any resolvent we can replace the expression on the one side by the expression on the other side and obtain a
resolvent which is equivalent up to existential quantification of new variables.
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The endomorphic approximation ordering is very interesting when used on the graph repre-
sentations of -terms. It is in fact an immediate generalization of first-order term matching.
More conveniently, if a graph 1 approximates a graph 2 with an endomorphism
, this
approximation is characterized exactly by a mapping


V
: Var( 1) 7! Var( 2) that can be

constructed inductively as follows:21

� 

V
(Root( 1)) = Root( 2);

� for every X1 2 Var( 1) and for every featurè 2 F such that`(X1) = Y1, then


V
(Y1) = `(


V
(X1)):

It is clear that this construction is well-defined by the very definition of endomorphic
approximation. In fact, a mapping such as


V
can be extended to all variables


V
: V 7! V ; it

can be defined simply from
 as

V
(Root( )) = Root(
( )), for all  in .

For example, provided thatmarried person< person; smith< name;male< gender; and
female< gender, then the term:

X1 : person(lastname) X2 : name;
spouse) X3 : person(lastname) X2;

spouse) X4 : person);
sex) X5 : gender)

approximates the term:

Y1 : married person(lastname) Y2 : smith;
spouse) Y3 : married person(lastname) Y2;

sex) Y4 : female;
spouse) Y1);

sex) Y5 : male)

with the endormorphic mapping of variables:

V
(X1) = Y1, 


V
(X2) = Y2, 


V
(X3) = Y3,



V
(X4) = Y1, and


V
(X5) = Y5.

As for a matching algorithm, the basic unification rules of Figure 3 are sufficient. Evidently,
if the basic unification yields?, then this shows disentailment. Otherwise, we will exhibit
conditions on the obtained variable bindings which characterize entailment.

First, observe that after normalizing a consistent OSF-term using Rules (B.1)–(B.5), the
variable equalities left in the solved form generate an equivalence relation on the variables.
We callvariable coreferencethis equivalence relation.

Given two -terms 1 and 2, to decide whether 2 v  1 and, if so, to compute the principal
endomorphic mapping
V from Var( 2) to Var( 1) (the “matching substitution”), we proceed
as follows:

21Given an OSF-graph , we use the notationRoot( ) to designate its root variable,Sort (X) to designate the
sort of the variableX in  , and` (X) = Y to express the fact that has an arc labeled̀between nodesX andY.
(When no ambiguity may arise, we omit the subscript .)
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� [1.] let  01 be the -term obtained from 1 by completing it with new variables sorted
with > at any path occurrence of 2 that isnot in  1;

� [2.] let � be the normal form ofRoot( 1)
:
= Root( 2) &  01 &  2;

� [3.] if � is not ? then let 
1 (resp., 
2) be the canonical surjection ofVar( 01)
(resp.,Var( 2)) onto the coreference classes of�; i.e., the function that maps a variable
to its coreference class.

Then,

Theorem 5  2 v  1 with principal OSF-endomorphism
 if and only if� is not? and
1 is a
sort-preserving bijection.22 Then,


V
= 
�1

1 � 
2 : Var( 2) 7! Var( 1) is the corresponding
endomorphic variable mapping.

Proof: First of all, let us observe that completing 1 into 0

1 with feature occurrences of 2 with new
>-sorted variables is an equivalence transformation thanks to totality of features. In other words, 1
and 0

1 are equivalent. LetX 1 = Var( 0

1) and X 2 = Var( 2). The formula� is of the form & "

where consists only of sort and feature constraints and" consists only of equality constraints.
These variable equalities generate the coreference relation. Let [X] denote the coreference class ofX.

If 
1 is a sort-preserving bijection, then for every variableX of �, 
�1
1 ([X]) is the unique variable of

 01 which is element of this coreference class. Then, we can transform� into an equivalent formula
�̄ by replacing every variableX by 
�1

1 ([X]) in  and replacing" by "0 =
V

X2X2
X
:
= 


V
(X). Note

that this is an equivalence preserving transformation since�̄ is, by construction, of the form 01 & "0

and the coreference relation generated by" and"0 are identical. It is important to realize that this
statement would not be true if we had used 1 instead of 01. Indeed, then,̄� would have been of the
form 1 &  0 & "0 where 0 consisted of additional feature constraints corresponding to occurrences
of  2 missing in 1.

Clearly, it is true that8X 1: ( 01 $ 9X 2: ( 01 & "0)). This shows that8X 1: ( 01 $

9X 2: (Root( 1)
:
= Root( 2) &  01 &  2)) and, thus, 8X 1: ( 01 ! 9X 2: (Root( 1)

:
=

Root( 2) &  2)) is valid, and thus 2 v 1.

Conversely, if 2 v 1, then also8X 1: ( 
0
1 !9X 2: (Root( 1)

:
= Root( 2) &  2)) is valid, and,

thus, also8X 1: ( 
0
1 $9X 2: �). But this means that� does not contain equalities binding two

variables of 1 to each other, and that� does not contain a sort constraint stronger than the one in 1
on the (same or corresponding) variable of 1.

Note that the completion of 1 with occurrences from 2 done in Step 1 is necessary to
determine the bijection
1, and thus the mapping


V
, with no loss of information. For example,

if  1 = f (a; h) and 2 = f (X; h(X)), then 2 6v  1. However, using 1 instead of the
completed 01 = f (a; h(U)) and normalizing does result in a sort-preserving bijection while,
using 01, it does not.

6.3 Semantics of functional application

If a function is defined over -terms, then this means that it can be applied to set-denoting
objects to return set-denoting objects. We will first consider the meaning of pointwise

22By sort-preserving, we mean:8V 2 Var( 1);Sort 1(V) = Sort�(
1(V)).
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functional application given an OSF-algebraA and a valuation� inA. This extends naturally
to the meaning of functional application on sets, given just an OSF-algebraA.

The functionfA;� maps elements to elements of the domainDA of A. In fact, fA;� describes
a partial, namely at mostn-point function:

fA;�(d) = d0 if d 2 [[pi ]]
A;� �

i�1[

j=1
[[pj ]]

A and d0 2 [[ei ]]
A;� for some i.

The  -termsp1; . . .; pn are not necessarily disjoint. Instead of using an explicit negation
operator, we give a deterministic meaning to the top-down order in the function definition in
the above way. That is, we define the functionfA;� for only those valuations� where [[pi ]]A;�

is disjoint from [[p1]]A; . . .; [[pi�1]]A. Implicitly, we make the -termspi disjoint by giving
them the denotations [[pi ]]A;� � ([[p1]]A [ . . .[ [[pi�1]]A), for i = 1; . . .; n. Note that, for two
 -term 1 and 2, the set [[ 1]]A;� is disjoint with [[ 2]]A;� � [[ 1]]A, but generally not with
[[ 2]]A;� � [[ 1]]A;�. For example, take 1 = X : int and 2 = Y : real, and define some�
where�(X) = 3; �(Y) = 4.

The functionfA, i.e., f interpreted inA, maps elements (and, by extension, sets) to subsets of
the domainDA,

fA(d) = fd0 j 9� 2 Val(A): fA;�(d) = d0g:

The denotation of thefunctional applicationof f on the -term t under a valuation� in the
interpretationA is:

[[ f (t)]]A;� = fA([[ t]]A;�):

Thus,A; � j= Y : f (X : t) if and only if �(X) 2 [[ t]]A;� and�(Y) = fA;�
�
�(X)

�
for some

� 2 Val(A).

The denotation of the functional application off on the -term t in the interpretationA is
[[ f (t)]]A = fA([[ t]]A).

Example 6.1 We define the identity functionid on -terms by the rule:id(X : >)! X : >.
Then,idA(D) = D for any subsetD � DA. If we confuse singletons and their elements,
we may writeidA(d) = d for elementsd of the domain ofA. If s is any sort, then [[id(X :
s)]]A = [[X : s]]A = sA. In fact, the denotation of the functionid applied on any -term is
equal to the denotation of the -term. The denotation under a given valuation� is the value
of the element on which the function is applied, [[id(X : >)]]A;� = [[X : >]]A;� = f�(X)g.

Example 6.2 We define the functionany by the rule: any(X : >) ! Y : >. The
application of this function on a -term yields always the sort>, any( ) = Y : > = >.
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Note that [[any]]A;�
�
�(X)

�
= �(Y). Thus,anyA(D) = DA for any subsetD � DA, and

[[any(X : s)]]A;� = DA.

Example 6.3 For a fixed sorts, we define the functionsorts by the rule:sorts(X : s)! X :
>. Now, sortAs ([[X : >]]A;�) yieldsf�(X)g if �(X) 2 sA and; otherwise. This function
“type-checks” the variableX. Operationally, this means that the function callsorts(X) will
residuate untilX is known to be in the sorts and then fire; or, until it is known to be out of
the sortsand fails.

What about the interpretation of the syntactic objectf in an OSF-algebraA? The function
f is generally not completely specified in that notone function is singled out in every
interpretationA. Indeed, LIFE calculates with approximations of functions, just as it does
for values of the universe. Thus,f denotes, under each interpretationA, the set of all partial
functions' : DA 7! DA such that, if'(d) = d0, then there exists anA-valuation� such that
fA;�(d) = d0.

7 Conclusion

The original motivation of this paper was to provide a formal account of the precise manner
in which functional application is used in the resolution scheme of LIFE. This involved doing
three things essentially. Firstly, we have developed a correct and complete operational scheme
for testing entailment and disentailment of order-sorted feature constraints. To that end, we
have introduced a general technique, that we dubbed relative simplification, that amounts
to normalization of a formula in the context of another. Secondly, we have developed a
general residuation framework for guarded Horn-clauses over arbitrary constraint systems
with an incremental relative simplification system. Doing so, we have given a logical reading
of guarded rules as first-order formulae and exhibited operational and semantical properties
of the framework. Lastly, we used this general residuation framework on the particular
instance of functional application over the order-sorted features terms of LIFE. In particular,
we characterized functional application over LIFE’s structures in terms of their logical,
set-theoretic, and algebraic accounts.

As for perspectives, one important issue begs the question. Namely, it would be interesting to
build function denotations into the OSF-models. Indeed, while the framework of this paper
gives a natural meaning to function symbols, it does not consider the latter as a “first-class”
objects—i.e., the OSF-interpretations used here are not functionally complete. We plan to
study a means of construction using well-known techniquesà la Dana Scott to extend domains
of OSF-algebras to be functionally complete. That should involve the machinery of classical
Scott-style constructions. Another dimension to that endeavor would be that of seeing all
functions as features of objects. This intriguing perspective could indeed lead to interesting
model constructions.
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Another avenue for further work on the foundations that we have just cast is the use of the
new discipline for procedure parameter-passing in concurrent systems described as “call-by-
constraint-entailment.” This is along the lines of what has been proposed in [20] and [23], and
realized to some extent in AKL [15]. The novelty that our scheme suggests is the possibility
to derive automatically an effective means to realize this from the operational semantics of
a given constraint-solver. Then, it should bepractically possible for concurrent constraint
programming languages to use any constraint system to control suspension and resumption of
execution.
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abstraite. François Bourdoncle. January 1993.
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